Dispersing trace amounts of nanoparticles into common base-fluids has a significant impact on the optical as well as thermophysical properties of the base-fluid. This characteristic can be utilized to effectively capture and transport solar radiation. Enhancement of the solar irradiance absorption capacity leads to a higher heat transfer rate resulting in more efficient heat transfer. This paper attempts to introduce the idea of harvesting solar radiant energy through usage of nanofluid-based concentrating parabolic solar collectors (NCPSC). In order to theoretically analyze the NCPSC, it has been mathematically modeled, and the governing equations have been numerically solved using finite difference technique. The results of the model were compared with the experimental results of conventional concentrating parabolic solar collectors under similar conditions. It was observed that while maintaining the same external conditions (such as ambient/inlet temperatures, wind speed, solar insolation, flow rate, concentration ratio, etc.) the NCPSC has about 5–10% higher efficiency as compared to the conventional parabolic solar collector. Furthermore, parametric studies were carried out to discover the influence of various parameters on performance and efficiency. The following parameters were studied in the present study: solar insolation, incident angle, and the convective heat transfer coefficient. The theoretical results clearly indicate that the NCPSC has the potential to harness solar radiant energy more efficiently than a conventional parabolic trough.

References

References
1.
Lee
,
S. W.
,
Park
,
S. D.
,
Kang
,
S.
,
Bang
,
I. C.
, and
Kim
,
J. H.
,
2011
, “
Investigation of Viscosity and Thermal Conductivity of SiC Nanofluids for Heat Transfer Applications
,”
Int. J. Heat Mass Transfer,
54
(
1-3
), pp.
433
438
.10.1016/j.ijheatmasstransfer.2010.09.026
2.
Chen
,
H.
,
Yang
,
W.
,
He
,
Y.
,
Ding
,
Y.
,
Zhang
,
L.
,
Tan
,
C.
,
Lapkin
,
A. A.
, and
Bavykin
,
D. V.
,
2008
, “
Heat Transfer and Flow Behavior of Aqueous Suspensions of Titanate Nanotubes (Nanofluids)
,”
Powder Technol.
,
183
(
1
), pp.
63
72
.10.1016/j.powtec.2007.11.014
3.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigation of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
), pp.
560
568
.10.1016/j.ijthermalsci.2007.05.004
4.
Eastman
,
J. A.
,
Choi
,
U. S.
,
Li
,
S.
,
Thompson
,
L. J.
, and
Lee
,
S.
,
1996
, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
Proceedings of the Symposium on Nanophase and Nanocomposite Materials II
,
MRS Proceedings
, Vol.
457
, pp.
3
11
. 10.1557/PROC-457-3
5.
Sarkar
,
J.
,
2011
, “
A Critical Review on Convective Heat Transfer Correlations of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
3271
3277
.10.1016/j.rser.2011.04.025
6.
Kleinstreuer
,
C.
,
Li
,
J.
, and
Koo
,
J.
,
2008
, “
Microfluidics of Nano-Drug Delivery
,”
Int. J. Heat Mass Transfer,
51
(
23-24
), pp.
5590
5597
.10.1016/j.ijheatmasstransfer.2008.04.043
7.
He
,
X.
,
Park
,
E. Y. H.
,
Fowler
,
A.
,
Yarmush
,
M. L.
, and
Toner
,
M.
,
2008
, “
Vitrification by Ultra-Fast Cooling at a Low Concentration of Cryoprotectants in a Quartz Micro-Capillary: A Study Using Murine Embryonic Stem Cells
,”
Cryobiology
,
56
(
3
), pp.
223
232
.10.1016/j.cryobiol.2008.03.005
8.
Tyagi
,
H.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2009
, “
Thermochemical Conversion of Biomass Using Solar Energy: Use of Nanoparticle-Laden Molten Salt as the Working Fluid
,”
ASME
3rd International Conference on Energy Sustainability
,
San Francisco, CA
, July 19–23, Paper No. ES2009-90039. 10.1115/ES2009-90039
9.
Otanicar
,
T.
,
Phelan
,
P. E.
,
Prasher
R. S.
, and
Golden
J. S.
,
2009
, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,”
Sol. Energy
,
83
(
7
), pp.
969
977
.10.1016/j.solener.2008.12.009
10.
Saini
,
E.
,
Barison
,
S.
,
Pagura
,
C.
,
Mercatelli
,
L.
,
Sansoni
,
P.
,
Fontani
,
D.
,
Jafrancesco
,
D.
, and
Francini
,
F.
,
2010
, “
Carbon Nanohorns-Based Nanofluids as Direct Sunlight Absorbers
,”
Opt. Express
,
18
(
5
), pp.
5179
5187
.10.1364/OE.18.005179
11.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041004
.10.1115/1.3197562
12.
Otanicar
,
T.
,
Phelan
,
P. E.
,
Prasher
R. S.
,
Rosengarten
G.
, and
Taylor
R. A.
,
2010
, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033102
.10.1063/1.3429737
13.
Lenert
,
A.
,
Zuniga
,
Y. S. P.
, and
Wang
,
E. N.
,
2010
, “
Nanofluid-Based Absorbers for High Temperature Direct Solar Collectors
,”
Proceedings of the International Heat Transfer Conference
(
IHTC14
),
Washington, D.C
., Aug. 8–13, Paper No. IHTC14-22208. 10.1115/IHTC14-22208
14.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Walker
,
C. A.
,
Nguyen
,
M.
,
Trimble
,
S.
, and
Prasher
,
R.
,
2011
, “
Applicability of Nanofluids in High Flux Solar Collectors
,”
J. Renewable Sustainable Energy
,
3
(
2
), p.
023104
.10.1063/1.3571565
15.
Khullar
,
V.
, and
Tyagi
,
H.
,
2010
, “
Application of Nanofluids as the Working Fluid in Concentrating Parabolic Solar Collectors
,”
37th National & 4th International Conference on Fluid Mechanics & Fluid Power
,
IIT Madras, Chennai, India, Dec. 16–18
, Paper No. FMFP2010-179.
16.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Mahoney
,
A. R.
,
Mancini
,
T. R.
,
Matthews
,
C. W.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
, “
Test Results: SEGS LS-2 Solar Collector
,”
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND94-1884.
17.
Duffle
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
3rd ed.
,
John Wiley and Sons
, pp.
75
85
, 189, 327, Chap. 2, 4, 7.
18.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1983
,
Absorption and Scattering of Light by Small Particles
,
John Wiley and Sons
,
New York
, pp.
130
136
, Chap. 5.
19.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
John Wiley and Sons
, p.
905
.
20.
Therminol, “Therminol VP-1: Vapor Phase/Liquid Phase Heat Transfer Fluid,” Solutia Inc., retrieved June 2012, http://www.therminol.com/pages/bulletins/therminol_vp1.pdf
21.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2008
,
Nanofluids: Science and Technology
,
John Wiley and Sons
,
New Jersey
,
pp.
167
168
, Chap. 4.
22.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
,
2006
, “
Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles
,”
J. Appl. Phys.
,
100
, p.
044325
.10.1063/1.2259789
23.
Maxwell
,
J. C.
,
1891
,
A Treatise on Electricity and Magnetism
, Vol.
1
, unabridged
3rd ed.
,
Clarendon Press
,
Oxford, UK
, pp.
435
441
, Chap. 9.
24.
Hamilton
,
R. L.
,
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.10.1021/i160003a005
25.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2005
, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
,
94
(
2
), p.
025901
.10.1103/PhysRevLett.94.025901
26.
Wang
,
B. X.
,
Zhou
,
L. P.
, and
Peng
,
X. F.
,
2003
, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2665
2672
.10.1016/S0017-9310(03)00016-4
27.
Nan
,
C. W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), pp.
6692
6699
.10.1063/1.365209
28.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L. W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Paola
,
R. D.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J. H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Vaerenbergh
,
S. V.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W. H.
,
Zhao
,
X. Z.
, and
Zhou
,
S. Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
, p.
094312
.10.1063/1.3245330
29.
Lenert
,
A.
, and
Wang
,
E. N.
,
2012
, “
Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion
,”
Sol. Energy
,
86
, pp.
253
265
.10.1016/j.solener.2011.09.029
30.
Winsemius
,
P.
,
van Kampen
,
F. F.
,
Lengkeek
,
H. P.
, and
van Went
,
C. G.
,
1976
, “
Temperature Dependence of the Optical Properties of Au, Ag and Cu
,”
J. Phys. F: Met. Phys.
,
6
(
8
), pp.
1583
1606
.10.1088/0305-4608/6/8/017
31.
Link
,
S.
, and
El-Sayed
,
M. A.
,
1999
, “
Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles
,”
J. Phys. Chem. B.
,
103
(
21
), pp.
4212
4217
.10.1021/jp984796o
32.
Bashkatov
,
A. N.
, and
Genina
,
E. A.
,
2003
, “
Water Refractive Index in Dependence on Temperature and Wavelength: A Simple Approximation
,”
Proc. SPIE
, pp.
393
395
.10.1117/12.518857
33.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic Press
,
California
, pp.
522
-
523
, Chap. 16.
34.
Brewster
,
M. Q.
,
1992
,
Thermal Radiative Transfer and Properties
,
John Wiley and Sons
,
New York
, p.
502
.
35.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Adrian
,
R.
, and
Prashar
,
R.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
, pp.
2251
2261
.10.1186/1556-276X-6-225
36.
Cengel
,
Y. A.
,
2003
,
Heat Transfer: A Practical Approach
,
2nd ed.
,
McGraw-Hill
,
India
, pp.
282
291
, Chap. 5.
37.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,”
National Renewable Energy Laboratory
,
Colorado
, Report No. NREL/TP-550-34169.
You do not currently have access to this content.