Uniform silicon nanowires (SiNW) were successfully fabricated on the top, bottom, and sidewall surfaces of silicon microchannels by using a two-step electroless etching process. Different microchannel patterns with the channel width from 100 to 300 μm were first fabricated in a 10 mm × 10 mm silicon chip and then covered by SiNW with an average height of 10–20 μm. The effects of the microchannel geometry, micro/nano-hierarchical structures on pool boiling were studied and the bubble dynamics on different sample surfaces were compared. It was found that the combination of the micro/nanostructures promoted microbubble emission boiling under moderate heat fluxes, and yielded superior boiling heat transfer performance. At given wall superheats, the maximum heat flux of the microchannel with SiNW was improved by 120% over the microchannel-only surface, and more than 400% over a plain silicon surface. These results provide a new insight into the boiling mechanism for micro/nano-hierarchical structures and demonstrate their potential in improving pool boiling performance for microchannels.

References

References
1.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Graham
,
W.
,
LaBianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R. J.
,
Rothwell
,
M. B.
,
Bezama
,
R. J.
,
Choudhary
,
R.
,
Marston
,
K.
,
Toy
,
H.
,
Wakil
,
J.
, and
Zitz
,
J.
,
2005
, “
A Practical Implementation of Silicon Microchannel Coolers for High Power Chips
,” 21st Annual
IEEE
Semiconductor Thermal Measurement and Management Symposium,
Mar. 15–17
, pp.
1
7
. 10.1109/STHERM.2005.1412151
2.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2002
, “
Evolution of Microchannel Flow Passages: Thermohydraulic Performance and Fabrication Technology
,”
ASME
Paper No.
IMECE2002-32043
. 10.1115/IMECE2002-32043
3.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
, pp.
126
129
.10.1109/EDL.1981.25367
4.
Kandlikar
,
S. G.
, and
Upadhye
,
H. R.
,
2005
, “
Extending the Heat Flux Limit With Enhanced Microchannels in Direct Single-Phase Cooling of Computer Chips
,” Proceedings 21st
IEEE
SEMI-THERM Symposium, pp.
8
15
. 10.1109/STHERM.2005.1412152
5.
Li
,
J.
, and
Peterson
,
G. P.
,
2007
, “
3-Dimensional Numerical Optimization of Silicon-Based High Performance Parallel Microchannel Heat Sink With Liquid Flow
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2895
2904
.10.1016/j.ijheatmasstransfer.2007.01.019
6.
Gong
,
L.
,
Kota
,
K.
,
Tao
,
W.
, and
Joshi
,
Y.
,
2011
, “
Parametric Numerical Study of Flow and Heat Transfer in Microchannels With Wavy Walls
,”
ASME J. Heat Transfer
,
133
, p.
051702
.10.1115/1.4003284
7.
Kosar
,
A.
, and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
(
2
), pp.
121
131
.10.1115/1.2137760
8.
Li
,
C.
,
Wang
,
Z.
,
Wang
,
P. I.
,
Peles
,
Y.
,
Koratkar
,
N.
, and
Peterson
,
G. P.
,
2008
, “
Nanostructured Copper Interfaces for Enhanced Boiling
,”
Small
,
4
, pp.
1084
1088
.10.1002/smll.200700991
9.
Im
,
Y.
,
Joshi
,
Y.
,
Dietz
,
C.
, and
Lee
,
S. S.
,
2010
, “
Enhanced Boiling of a Dielectric Liquid on Copper Nanowire Surfaces
,”
Int. J. Micro-Nano Scale Transp.
,
1
(1)
, pp.
79
95
.10.1260/1759-3093.1.1.79
10.
Chen
,
R.
,
Lu
,
M. C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.10.1021/nl8026857
11.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2011
, “
Direct Growth of Copper Nanowires on a Substrate for Boiling Applications
,”
Micro Nano Lett.
,
6
(
7
), pp.
563
566
.10.1049/mnl.2011.0136
12.
Dixit
,
P.
,
Lin
,
N.
,
Miao
,
J.
,
Wong
,
W. K.
, and
Choon
,
T. K.
,
2008
, “
Silicon Nanopillars Based 3D Stacked Microchannel Heat Sinks Concept for Enhanced Heat Dissipation Applications in MEM Packaging
,”
Sens. Actuators, A
,
141
, pp.
685
694
.10.1016/j.sna.2007.09.006
13.
Li
,
D.
,
Wu
,
G.
,
Wang
,
W.
,
Wang
,
Y.
, and
Yang
,
R.
,
2011
, “
Enhancing Flow Boiling Heat Transfer in Microchannels Using Monolithically-Coated Silicon Nanowires
,”
ASME
Paper No.
IMECE2011-64922
. 10.1115/IMECE2011-64922
14.
Yao
,
Z.
,
Lu
,
Y-W.
, and
Kandlikar
,
S. G.
,
2012
, “
Micro/Nano Hierarchical Structure in Microchannel Heat Sink for Boiling Enhancement
,” Proceeding
IEEE
MEMS 2012.10.1109/MEMSYS.2012.6170150
15.
Kim
,
J.
,
Kim
,
Y. H.
,
Choi
,
S.-H.
, and
Lee
,
W.
,
2011
, “
Curved Silicon Nanowires With Ribbon-Like Cross Sections by Metal-Assisted Chemical Etching
,”
ACS Nano
,
5
(6)
, pp.
5242
5248
.10.1021/nn2014358
16.
Weibel
,
J. A.
,
Garimella
,
S. V.
, and
North
,
M. T.
,
2010
, “
Characterization of Evaporation and Boiling From Sintered Powder Wicks Fed by Capillary Action
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4204
4215
.10.1016/j.ijheatmasstransfer.2010.05.043
17.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2011
, “
Effects of Nanowire Height on Pool Boiling Performance of Water on Silicon Chips
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2084
2090
.10.1016/j.ijthermalsci.2011.06.009
18.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2011
, “
Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels
,”
ASME J. Heat Transfer
,
133
(
5
), p.
052902
.10.1115/1.4003046
19.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
75
, pp.
3
8
.
20.
Theofanous
,
T. G.
,
Tu
,
J. P.
,
Dinh
,
A. T.
, and
Zhang
,
L. J.
,
2002
, “
The Boiling Crisis Phenomenon
,”
Exp. Therm. Fluid Sci.
,
26
, pp.
775
792
.10.1016/S0894-1777(02)00192-9
21.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.10.1016/j.ijheatmasstransfer.2011.10.010
22.
Hendricks
,
T. J.
,
Krishnan
,
S.
,
Choi
,
C.
,
Chang
,
C.-H.
, and
Paul
,
B.
,
2010
, “
Enhancement of Pool-Boiling Heat Transfer Using Nanostructured Surfaces on Aluminum and Copper
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3357
3365
.10.1016/j.ijheatmasstransfer.2010.02.025
23.
Kim
,
S.
,
Kim
,
H. D.
,
Kim
,
H.
,
Ahn
,
H. S.
,
Jo
,
H.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2010
, “
Effects of Nano-Fluid and Surfaces With Nanostructre on the Increase of CHF
,”
Exp. Therm. Fluid Sci.
,
34
(
4
), pp.
487
495
.10.1016/j.expthermflusci.2009.05.006
24.
Inada
,
S.
,
Miyasaka
,
Y.
,
Izumi
,
R.
, and
Owase
,
Y.
,
1981
, “
A Study on Boiling Curves in Subcooled Pool Boiling
,”
Trans. JSME
,
47
(
417
), pp.
852
861
.10.1299/kikaib.47.852
25.
Kubo
,
R.
, and
Kumagai
,
S.
,
1992
, “
Occurrence and Stability of Microbubble Emission Boiling
,”
Trans. JSME
,
58
(
546
), pp.
497
502
.10.1299/kikaib.58.497
26.
Suzuki
,
K.
,
Torikai
,
K.
,
Satoh
,
H.
,
Ishimaru
,
J.
, and
Tanaka
,
Y.
,
1999
, “
Boiling Heat Transfer of Subcooled Water in a Horizontal Rectangular Channel
,”
Trans. JSME
,
65
(
637
), pp.
3097
3104
.10.1299/kikaib.65.3097
You do not currently have access to this content.