Propagation of Rayleigh traveling waves from a gas on a nanotube surface activates a macroscopic flow of the gas (or gases) that depends critically on the atomic mass of the gas. Our molecular dynamics simulations show that the surface waves are capable of actuating significant macroscopic flows of atomic and molecular hydrogen, helium, and a mixture of both gases both inside and outside carbon nanotubes (CNT). In addition, our simulations predict a new “nanoseparation” effect when a nanotube is filled with a mixture of two gases with different masses or placed inside a volume filled with a mixture of several gases with different masses. The mass selectivity of the nanopumping can be used to develop a highly selective filter for various gases. Gas flow rates, pumping, and separation efficiencies were calculated at various wave frequencies and phase velocities of the surface waves. The nanopumping effect was analyzed for its applicability to actuate nanofluids into fuel cells through carbon nanotubes.

References

References
1.
Dillon
,
A. C.
,
Jones
,
K. M.
,
Bekkedahl
,
T. A.
,
Kiang
,
C. H.
,
Bethune
,
D. S.
, and
Heben
,
M. J.
,
1997
, “
Storage of Hydrogen in Single-Walled Carbon Nanotubes
,”
Nature
,
386
, pp.
377
379
.10.1038/386377a0
2.
Liu
,
C.
,
Fan
,
Y. Y.
,
Liu
,
M.
,
Cong
,
H. T.
,
Cheng
,
H. M.
, and
Dresselhaus
,
M. S.
,
1999
, “
Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature
,”
Science
,
286
(
5442
), pp.
1127
1129
.10.1126/science.286.5442.1127
3.
Chen
,
P.
,
Wu
,
X.
,
Lin
,
J.
, and
Tan
,
K. L.
, “
High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures
,”
Science
,
285
, pp.
91
92
.10.1126/science.285.5424.91
4.
Ye
,
Y.
,
Ahn
,
C. C.
,
Witham
,
C.
,
Fultz
,
B.
,
Liu
,
J.
,
Rinzler
,
A. G.
,
Colbert
,
D.
,
Smith
,
K. A.
, and
Smalley
,
R. E.
, “
Hydrogen Adsorption and Cohesive Energy of Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
,
74
, pp.
2307
2309
.10.1063/1.123833
5.
Dillon
,
A. C.
,
Gennet
,
T.
,
Alleman
,
J. L.
,
Jones
,
K. M.
,
Parilla
,
P. A.
, and
Heben
,
M. J.
,
2000
, “
Carbon Nanotube Materials for Hydrogen Storage
,”
Conference Proceedings on US DOE Hydrogen Program Review
.
6.
Dillon
,
A. C.
, and
Heben
,
M. J.
,
2001
, “
Hydrogen Storage Using Carbon Adsorbents: Past, Present and Future
,”
Appl. Phys. A
,
72
, pp.
133
142
.10.1007/s003390100788
7.
Meregalli
,
V.
, and
Parinello
,
M.
,
2001
, “
Hydrogen Storage Using Carbon Adsorbents: Past, Present and Future
,”
Appl. Phys. A
,
72
(
2
), pp.
129
132
.10.1007/s003390100789
8.
Li
,
J.
,
Furuta
,
T.
,
Goto
,
H.
,
Ohashi
,
T.
,
Fujiwara
,
Y.
, and
Yip
,
S.
,
2003
, “
Theoretical Evaluation of Hydrogen Storage Capacity in Pure Carbon Nanostructures
,”
J. Chem. Phys.
,
119
, pp.
2376
2385
.10.1063/1.1582831
9.
Zuttel
,
A.
,
Nutzenadel
,
C.
,
Sudan
,
P.
,
Mauron
,
P.
,
Emmenegger
,
C.
,
Rentsch
,
S.
,
Schlapbach
,
L.
,
Weidenkaff
,
A.
, and
Kiyobayashi
,
T.
,
2002
, “
Hydrogen Sorption by Carbon Nanotubes and Other Carbon Nanostructures
,”
J. Alloys Compd.
,
330–332
, pp.
676
682
.10.1016/S0925-8388(01)01659-0
10.
Schlapbach
,
L.
, and
Zuttel
,
A.
,
2001
, “
Hydrogen-Storage Materials for Mobile Applications
,”
Nature
,
414
, pp.
353
358
.10.1038/35104634
11.
Hydrogen, Fuel Cells & Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan
, Feb.
2005
, http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/
12.
Darhuber
,
A. A.
, and
Troian
,
S. M.
,
2005
, “
Principles of Microfluidic Actuation by Modulation of Surface Stresses
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
425
455
.10.1146/annurev.fluid.36.050802.122052
13.
Telschow
,
K. L.
,
Deason
,
V. A.
,
Cottle
,
D. L.
, and
Larson
,
J. D.
, III
,
2000
, “
UHF Acoustic Microscopic Imaging of Resonator Motion
,” Proceedings of
IEEE
Ultrasonics Symposium
,
Puerto Rico
, Paper No. 3I-3.10.1109/ULTSYM.2000.922627
14.
Barrat
,
J. L.
, and
Bocquet
,
L.
,
1999
, “
Influence of Wetting Properties on Hydrodynamic Boundary Conditions at a Fluid/Solid Interface
,”
Faraday Discuss.
,
112
, pp.
119
127
.10.1039/a809733j
15.
Thompson
,
P. A.
, and
Troian
,
S. N.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
, pp.
360
362
.10.1038/39475
16.
Priezjev
,
N. V.
, and
Troian
,
S. M.
,
2004
, “
Molecular Origin and Dynamic Behavior of Slip in Sheared Polymer Films
,”
Phys. Rev. Lett.
,
92
, p.
018302
.10.1103/PhysRevLett.92.018302
17.
Thorsen
,
T.
,
Maerkl
,
S. J.
, and
Quake
,
S. R.
,
2002
, “
Microfluidic Large-Scale Integration
,”
Science
,
298
, pp.
580
584
.10.1126/science.1076996
18.
Bitsanis
,
I.
,
Magda
,
J. J.
,
Tirrel
,
M.
, and
Davis
,
H. T.
,
1987
, “
Molecular Dynamics of Flow in Micropores
,”
J. Chem. Phys.
,
87
, pp.
1733
1750
.10.1063/1.453240
19.
Zengerle
,
R.
, and
Richter
,
M.
,
1994
, “
Simulation of Microfluid Systems
,”
J. Micromech. Microeng.
,
4
, pp.
192
204
.10.1088/0960-1317/4/4/004
20.
Prins
,
M. W. J.
,
Welters
,
W. J. J.
, and
Weekamp
,
J. W.
,
2001
, “
Fluid Control in Multichannel Structures by Electrocapillary Pressure
,”
Science
,
291
, pp.
277
280
.10.1126/science.291.5502.277
21.
Tuzun
,
R. E.
,
Noid
,
D. W.
,
Sumpter
,
B. G.
, and
Merkle
,
R. C.
,
1996
, “
Dynamics of Fluid Flow Inside Carbon Nanotubes
,”
Nanotechnology
,
7
, pp.
241
246
.10.1088/0957-4484/7/3/012
22.
Ni
,
B.
,
Sinnot
,
S. B.
,
Mikulski
,
P. T.
, and
Harrison
,
J. A.
,
2002
, “
Compression of Carbon Nanotubes Filled With C60, CH4, or Ne: Predictions From Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
,
88
, p.
205505
.10.1103/PhysRevLett.88.205505
23.
Supple
,
S.
, and
Quirke
,
N.
,
2003
, “
Rapid Imbibition of Fluids in Carbon Nanotubes
,”
Phys. Rev. Lett.
,
90
, p.
214501
.10.1103/PhysRevLett.90.214501
24.
Supple
,
S.
, and
Quirke
,
N.
,
2004
, “
Molecular Dynamics of Transient Oil Flows in Nanopores. I: Imbibition Speeds for Single Wall Carbon Nanotubes
,”
J. Chem. Phys.
,
121
, pp.
8571
8579
.10.1063/1.1796272
25.
Wang
,
Q.
,
2009
, “
Transportation of Hydrogen Molecules Using Carbon Nanotubes in Torsion
,”
Carbon
,
47
, pp.
1867
1885
.10.1016/j.carbon.2009.03.005
26.
Wang
,
Q.
,
2009
, “
Separation of Atoms With Carbon Nanotubes
,”
Carbon
,
47
, pp.
2752
2760
.10.1016/j.carbon.2009.05.030
27.
Wang
,
Q.
,
2009
, “
Atomic Transportation via Carbon Nanotubes
,”
Nano Lett.
,
9
, pp.
245
249
.10.1021/nl802829z
28.
Duan
,
W. H.
, and
Wang
,
Q.
,
2010
, “
Water Transport With a Carbon Nanotube Pump
,”
ASC Nano
,
4
, pp.
2338
2344
.10.1021/nn1001694
29.
Zhang
,
H. W.
,
Zhang
,
Z. Q.
,
Wang
,
L.
,
Zheng
,
Y. G.
,
Wang
,
J. B.
, and
Wang
,
Z. K.
,
2007
, “
Pressure Control Model for Transport of Liquid Mercury in Carbon Nanotubes
,”
Appl. Phys. Lett.
,
90
(
14
), p.
144105
.10.1063/1.2720744
30.
Fan
,
R.
,
Karnik
,
R.
,
Yue
,
M.
,
Li
,
D.
,
Majumdar
,
A.
, and
Yang
,
P.
,
2005
, “
DNA Translocation in Inorganic Nanotubes
,”
Nano Lett.
,
5
, pp.
1633
1637
.10.1021/nl0509677
31.
Kral
,
P.
, and
Tomanek
,
D.
,
1999
, “
Laser-Driven Atomic Pump
,”
Phys. Rev. Lett.
,
82
, pp.
5373
5376
.10.1103/PhysRevLett.82.5373
32.
Svensson
,
K.
,
Olin
,
H.
, and
Olsson
,
E.
,
2004
, “
Nanopipettes for Metal Transport
,”
Phys. Rev. Lett.
,
93
, p.
145901
.10.1103/PhysRevLett.93.145901
33.
Stan
,
G.
, and
Cole
,
M. W.
,
1998
, “
Low Coverage Adsorption in Cylindrical Pores
,”
Surf. Sci.
,
395
, pp.
280
291
.10.1016/S0039-6028(97)00632-8
34.
Simonyan
,
V. V.
, and
Johnson
,
J. K.
,
2002
, “
Hydrogen Storage in Carbon Nanotubes and Graphitic Nanofibers
,”
J. Alloys Compd.
,
330–332
, pp.
659
665
.10.1016/S0925-8388(01)01664-4
35.
Zhao
,
Y.
,
Kim
,
Y.-H.
,
Dillon
,
A. C.
,
Heben
,
M. J.
, and
Zhang
,
S. B.
,
2005
, “
Hydrogen Storage in Novel Organometallic Buckyballs
,”
Phys. Rev. Lett.
,
94
, p.
155504
.10.1103/PhysRevLett.94.155504
36.
Hirscher
,
M.
,
Becher
,
M.
,
Haluska
,
M.
,
von Zeppelin
,
F.
,
Chen
,
X.
,
Dettlaff-Welikogowska
,
U.
, and
Roth
,
S. J.
,
2003
, “
Are Carbon Nanostructures an Efficient Hydrogen Storage Medium?
,”
Alloys Compd.
,
356–357
, pp.
433
437
.10.1016/S0925-8388(03)00142-7
37.
Skoulidas
,
A. I.
,
Ackerman
,
D. M.
,
Johnson
,
J. K.
, and
Sholl
,
D. S.
,
2002
, “
Rapid Transport of Gases in Carbon Nanotubes
,”
Phys. Rev. Lett.
,
89
, p.
185901
.10.1103/PhysRevLett.89.185901
38.
Clausing
,
P.
,
1971
, “
The Flow of Highly Rarefied Gases Through Tubes of Arbitrary Length
,”
J. Vac. Sci. Technol.
,
8
, pp.
636
646
.10.1116/1.1316379
39.
Sone
,
Y.
,
Waniguchi
,
Y.
, and
Aoki
,
K.
,
1996
, “
One-Way Flow of a Rarefied Gas Induced in a Channel With a Periodic Temperature Distribution
,”
Phys. Fluids
,
8
, pp.
2227
2235
.10.1063/1.869101
40.
Lereu
,
A. L.
,
Passian
,
A.
,
Warmack
,
R. J.
,
Ferrell
,
T. L.
, and
Thundat
,
T.
,
2004
, “
Effect of Thermal Variations on the Knudsen Forces in the Transitional Regime
,”
Appl. Phys. Lett.
,
84
, pp.
1013
1015
.10.1063/1.1644916
41.
Gupta
,
N. K.
, and
Gianchandani
,
Y. B.
,
2008
, “
Thermal Transpiration in Zeolites: A Mechanism for Motionless Gas Pumps
,”
Appl. Phys. Lett.
,
93
, p.
193511
.10.1063/1.3025304
42.
Clorennec
,
D.
, and
Royer
,
D.
,
2003
, “
Analysis of Surface Acoustic Wave Propagation on a Cylinder Using Laser Ultrasonics
,”
Appl. Phys. Lett.
,
82
, pp.
4608
4610
.10.1063/1.1586463
43.
Natsuki
,
T.
,
Hayashi
,
T.
, and
Endo
,
M.
,
2005
, “
Wave Propagation of Carbon Nanotubes Embedded in an Elastic Medium
,”
J. Appl. Phys.
,
97
, p.
044307
.10.1063/1.1849823
44.
Tsukahara
,
Y.
,
Nakaso
,
N.
,
Cho
,
H.
, and
Yamanaka
,
K.
,
2000
, “
Observation of Diffraction-Free Propagation of Surface Acoustic Waves Around a Homogeneous Isotropic Solid Sphere
,”
Appl. Phys. Lett.
,
77
, pp.
2926
2928
.10.1063/1.1322056
45.
Clorennec
,
D.
,
Royer
,
D.
, and
Walaszek
,
H.
,
2002
, “
Nondestructive Evaluation of Cylindrical Parts Using Laser Ultrasonics
,”
Ultrasonics
,
40
, pp.
783
789
.10.1016/S0041-624X(02)00210-X
46.
Viktorov
,
I. A.
,
1967
,
Rayleigh and Lamb Waves: Physical Theory and Applications
,
Plenum
,
New York
.
47.
Hwang
,
D. P.
,
1997
, “
A Proof of Concept Experiment for Reducing Skin Friction by Using a Micro-Blowing Technique
,”
NASA Techn. Memo. Report No. NASA-TM-107315
, Paper No. AIAA-97-0546.
48.
Carpenter
,
P. W.
,
Davies
,
C.
, and
Lucey
,
A. D.
,
2006
, “
Hydrodynamics and Complaint Walls: Does the Dolphin Have a Secret?
,” Current Sci.,
79
, pp.
758
765
. Available at http://www.currentscience.ac.in/Downloads/article_id_079_06_0758_0765_0.pdf
49.
Insepov
,
Z.
,
Wolf
,
D.
, and
Hassanein
,
A.
,
2006
, “
Nanopumping Using Carbon Nanotubes
,”
Nano Lett.
,
6
, pp.
1893
1895
.10.1021/nl060932m
50.
Insepov
,
Z.
,
2009
, “
New Nanopumping Effects With Carbon Nanotubes
,”
Recent Developments in Modeling and Applications of Carbon Nanotubes
,
Transworld Research Network
,
Kerala, India
, Chap. 1, pp.
1
14
.
51.
Wang
,
X.
,
Liu
,
Y.
, and
Zhu
,
D.
,
2001
, “
Controlled Growth of Well-Aligned Carbon Nanotubes With Large Diameters
,”
Chem. Phys. Lett.
,
340
, pp.
419
424
.10.1016/S0009-2614(01)00410-9
52.
Yang
,
Q.
,
Xiao
,
C.
,
Chen
,
W.
, and
Hirose
,
A.
,
2004
, “
Selective Growth of Diamond and Carbon Nanostructures by Hot Filament Chemical Vapor Deposition
,”
Diamond Relat. Mater.
,
13
, pp.
433
437
.10.1016/j.diamond.2003.11.076
You do not currently have access to this content.