Based on the concept of an energy pump, water transportation in a carbon nanotube (CNT) is studied by molecular dynamics simulations. The influences of CNT pretwist angle, water mass, environmental temperature, CNT diameter, CNT channel length, and CNT channel restrain condition on driving force and transportation efficiency are investigated. It is found that in order to initiate the transportation, the pretwist angle must be larger than certain threshold, 80 deg, for the case of one water molecule in a restrained (8,0) CNT. Furthermore, driving force decreases with increasing water mass and it is more efficient to transport multiple water molecules than one water molecules. The water molecule is found to have higher degrees of collisions in a (8,0) CNT in elevated environmental temperature. By comparing three CNT channel lengths, the channel length of 19.80 nm is identified as a faster and more efficient transporter in an unrestrained (8,8) CNT. Finally, molecular dynamics (MD) simulation indicates that a water molecule can only be transported below 300 K in an unrestrained (8,8) CNT due to the large friction caused by severely deformed channel and the Brownian motion.

References

References
1.
Supple
,
S.
, and
Quirke
,
N.
,
2003
, “
Rapid Imbibition of Fluids in Carbon Nanotubes
,”
Phys. Rev. Lett.
,
90
(
21
), p.
214501
.10.1103/PhysRevLett.90.214501
2.
Ito
,
T.
,
Sun
,
L.
,
Henriquez
,
R. R.
, and
Crooks
,
R. M.
,
2004
, “
A Carbon Nanotube-Based Coulter Nanoparticle Counter
,”
Acc. Chem. Res.
,
37
(
12
), pp.
937
945
.10.1021/ar040108+
3.
Ito
,
T.
,
Sun
,
L.
,
Henriquez
,
R. R.
, and
Crooks
,
R. M.
,
2005
, “
A Carbon Nanotube-Based Coulter Nanoparticle Counter
,”
Acc. Chem. Res.
,
38
(
8
), pp.
687
687
.10.1021/ar050133v
4.
Kalra
,
A.
,
Hummer
,
G.
, and
Garde
,
S.
,
2004
, “
Methane Partitioning and Transport in Hydrated Carbon Nanotubes
,”
J. Phys. Chem. B
,
108
(
2
), pp.
544
549
.10.1021/jp035828x
5.
Thorsen
,
T.
,
Maerkl
,
S. J.
, and
Quake
,
S. R.
,
2002
, “
Microfluidic Large-Scale Integration
,”
Science
,
298
(
5593
), pp.
580
584
.10.1126/science.1076996
6.
Thomas
,
J. A.
, and
McGaughey
,
A. J. H.
,
2009
, “
Water Flow in Carbon Nanotubes: Transition to Subcontinuum Transport
,”
Phys. Rev. Lett.
,
102
(
18
), p.
184502
.10.1103/PhysRevLett.102.184502
7.
Hanasaki
,
I.
,
Yonebayashi
,
T.
, and
Kawano
,
S.
,
2009
, “
Molecular Dynamics of a Water Jet From a Carbon Nanotube
,”
Phys. Rev. E
,
79
(
4
), p.
046307
.10.1103/PhysRevE.79.046307
8.
Shiomi
,
J.
, and
Maruyama
,
S.
,
2009
, “
Water Transport Inside a Single-Walled Carbon Nanotube Driven by a Temperature Gradient
,”
Nanotechnology
,
20
(
5
), p.
055708
.10.1088/0957-4484/20/5/055708
9.
Zuo
,
G.
,
Shen
,
R.
,
Ma
,
S.
, and
Guo
,
W.
,
2010
, “
Transport Properties of Single-File Water Molecules Inside a Carbon Nanotube Biomimicking Water Channel
,”
ACS Nano
,
4
(
1
), pp.
205
210
.10.1021/nn901334w
10.
Qiu
,
H.
,
Shen
,
R.
, and
Guo
,
W. L.
,
2011
, “
Vibrating Carbon Nanotubes as Water Pumps
,”
Nano Res.
,
4
(
3
), pp.
284
289
.10.1007/s12274-010-0080-y
11.
Nicholls
,
W. D.
,
Borg
,
M. K.
,
Lockerby
,
D. A.
, and
Reese
,
J. M.
,
2012
, “
Water Transport Through (7,7) Carbon Nanotubes of Different Lengths Using Molecular Dynamics
,”
Microfluid. Nanofluid.
,
12
(
1–4
), pp.
257
264
.10.1007/s10404-011-0869-3
12.
Kalra
,
A.
,
Garde
,
S.
, and
Hummer
,
G.
,
2003
, “
Osmotic Water Transport Through Carbon Nanotube Membranes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
18
), pp.
10175
10180
.10.1073/pnas.1633354100
13.
Rivera
,
J. L.
, and
Starr
,
F. W.
,
2010
, “
Rapid Transport of Water via a Carbon Nanotube Syringe
,”
J. Phys. Chem. C
,
114
(
9
), pp.
3737
3742
.10.1021/jp906527c
14.
Duan
,
W. H.
, and
Wang
,
Q.
,
2010
, “
Water Transport With a Carbon Nanotube Pump
,”
ACS Nano
,
4
(
4
), pp.
2338
2344
.10.1021/nn1001694
15.
Rigby
,
D.
,
Sun
,
H.
, and
Eichinger
,
B. E.
,
1997
, “
Computer Simulations of Poly(Ethylene Oxide): Force Field, PVT Diagram and Cyclization Behaviour
,”
Polymer Int.
,
44
(
3
), pp.
311
330
.10.1002/(SICI)1097-0126(199711)44:3<311::AID-PI880>3.0.CO;2-H
16.
Sun
,
H.
,
1998
, “
Compass: An Ab Initio Force-Field Optimized for Condensed-Phase Applications—Overview With Details on Alkane and Benzene Compounds
,”
J. Phys. Chem. B
,
102
(
38
), pp.
7338
7364
.10.1021/jp980939v
17.
Duan
,
W. H.
,
Wang
,
Q.
,
Liew
,
K. M.
, and
He
,
X. Q.
,
2007
, “
Molecular Mechanics Modeling of Carbon Nanotube Fracture
,”
Carbon
,
45
(
9
), pp.
1769
1776
.10.1016/j.carbon.2007.05.009
18.
Wang
,
Q.
,
Duan
,
W. H.
,
Liew
,
K. M.
, and
He
,
X. Q.
,
2007
, “
Inelastic Buckling of Carbon Nanotubes
,”
Appl. Phys. Lett.
,
90
(
3
), p.
033110
.10.1063/1.2432235
19.
Jones
,
J. E.
,
1924
, “
On the Determination of Molecular Fields. II. From the Equation of State of a Gas
,”
Proc. R. Soc. London, Ser. A
,
106
(
738
), pp.
463
477
.10.1098/rspa.1924.0082
20.
Verlet
,
L.
,
1967
, “
Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules
,”
Phys. Rev.
,
159
(
1
), pp.
98
103
.10.1103/PhysRev.159.98
You do not currently have access to this content.