The potential of carbon nanotubes (CNTs) as nanosensors in detection of genes through a vibration analysis is investigated with molecular dynamics. The carbon nanotube based nanosensor under investigation is wrapped by a gene whose structure includes a single strand deoxyribose nucleic acid (DNA) with a certain number of distinct nucleobases. Different genes are differentiated or detected by identifying a differentiable sensitivity index that is defined to be the shifts of the resonant frequency of the nanotube. Simulation results indicate that the nanosensor is able to differentiate distinct genes, i.e., small proline-rich protein 2 A, small proline-rich protein 2B, small proline-rich protein 2D, and small proline-rich protein 2E, with a recognizable sensitivity. The research provides a rapid, effective, and practical method for detection of genes.

References

References
1.
Homola
,
J.
,
2003
, “
Present and Future of Surface Plasmon Resonance Biosensors
,”
Anal. Bioanal. Chem.
,
377
(
3
), pp.
528
539
.10.1007/s00216-003-2101-0
2.
Lud
,
S. Q.
,
Nikolaides
,
M. G.
,
Haase
,
I.
,
Fischer
,
M.
, and
Bausch
A. R.
,
2006
, “
Field Effect of Screened Charges: Electrical Detection of Peptides and Proteins by a Thin-Film Resistor
,”
Chem. Phys. Chem.
,
7
(
2
), pp.
379
384
.10.1002/cphc.200500484
3.
Haron
,
S.
, and
Ray
,
A. K.
,
2006
, “
Optical Biodetection of Cadmium and Lead Ions in Water
,”
Med. Eng. Phys.
,
28
(
10
), pp.
978
981
.10.1016/j.medengphy.2006.04.004
4.
Pohanka
,
M.
,
Skladal
,
P.
, and
Kroca
,
M.
,
2007
, “
Biosensors for Biological Warfare Agent Detection
,”
Def. Sci. J.
,
57
(
3
), pp.
185
193
.
5.
Wang
,
J.
,
Jiang
,
M.
,
Nilsen
,
T.
, and
Getts
,
R.
,
1998
, “
Dendritic Nucleic Acid Probes for DNA Biosensors
,”
J. Am. Chem. Soc.
,
120
(
32
), pp.
8281
8282
.10.1021/ja980619p
6.
Cattrall
,
R. W.
,
1997
,
Chemical Sensors (Chemistry Primers)
,
Oxford University Press
,
Oxford, UK
.
7.
Piunno
,
P.
,
Krull
,
U.
,
Hudson
,
R.
,
Damha
,
M.
, and
Cohen
,
H.
,
1995
, “
Fiber-Optic DNA Sensor for Fluorometric Nucleic Acid Determination
,”
Anal. Chem.
,
67
(
15
), pp.
2635
2643
.10.1021/ac00111a022
8.
Mikkelsen
,
S. R.
,
1996
, “
Electrochecmical Biosensors for DNA Sequence Detection
,”
Electroanalysis
,
8
(
1
), pp.
15
19
.10.1002/elan.1140080104
9.
Palecek
,
E.
,
Fojta
,
M.
,
Tomschick
,
M.
, and
Wang
,
J.
,
1998
, “
Electrochemical Biosensors for DNA Hybridization and DNA Damage
,”
Biosens. Bioelectron.
,
13
(
6
), pp.
621
628
.10.1016/S0956-5663(98)00017-7
10.
Geim
,
A. K.
,
2009
, “
Graphene: Status and Prospects
,”
Science
,
324
(
5934
), pp.
1530
1534
.10.1126/science.1158877
11.
Arash
,
B.
,
Wang
,
Q.
, and
Varadan
,
V. K.
,
2011
, “
Carbon Nanotube-Based Sensors for Detection of Gas Atoms
,”
ASME J. Nanotechnol. Eng. Med.
,
2
(
2
), p.
021010
.10.1115/1.4003967
12.
Chaste
,
J.
,
Eichler
,
A.
,
Moser
,
J.
,
Ceballos
,
G.
,
Rurali
,
R.
, and
Bachtold
,
A.
,
2012
, “
A Nanomechanical Mass Sensor With Yoctogram Resolution
,”
Nat. Nanotechnol.
,
7
, pp.
301
304
.10.1038/nnano.2012.42
13.
Arash
,
B.
,
Wang
,
Q.
, and
Duan
,
W. H.
,
2011
, “
Detection of Gas Atoms via Vibration of Graphenes
,”
Phys. Lett. A
,
375
(
24
), pp.
2411
2415
.10.1016/j.physleta.2011.05.009
14.
Xu
,
Y.
,
Mi
,
X.
, and
Aluru
,
N. R.
,
2009
, “
Detection of Defective DNA in Carbon Nanotubes by Combined Molecular Dynamics/Tight-Binding Technique
,”
Appl. Phys. Lett.
,
95
(
11
), p.
113116
.10.1063/1.3231922
15.
Li
,
J.
,
Ng
,
H. T.
,
Cassell
,
A.
,
Fan
,
W.
,
Chen
,
H.
,
Ye
,
Q.
,
Koehne
,
J.
,
Han
,
J.
, and
Meyyappan
,
M.
,
2003
, “
Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection
,”
Nano Lett.
,
3
(
5
), pp.
597
602
.10.1021/nl0340677
16.
Pacios
,
M.
,
Yilmaz
,
N.
,
Martín-Fernández
,
I.
,
Villa
,
R.
,
Godignon
,
P.
,
Valle
,
M. D.
,
Bartrolí
,
J.
, and
Esplandiu
,
M. J.
,
2012
, “
A Simple Approach for DNA Detection on Carbon Nanotube Microelectrode Arrays
,”
Sens. Actuators B
,
162
(
1
), pp.
120
127
.10.1016/j.snb.2011.12.048
17.
Merchant
,
C. A.
,
Healy
,
K.
,
Wanunu
,
M.
,
Ray
,
V.
,
Peterman
,
N.
,
Bartel
,
J.
,
Fischbein
,
M. D.
,
Venta
,
K.
,
Luo
,
Z.
,
Johnson
,
A. T. C.
, and
Drndic
,
M.
,
2010
, “
DNA Translocation Through Graphene Nanopores
,”
Nano Lett.
,
10
(
8
), pp.
2915
2921
.10.1021/nl101046t
18.
Sathe
,
C.
,
Zou
,
X.
,
Leburton
,
J. P.
, and
Schulten
,
K.
,
2011
, “
Computational Investigation of DNA Detection Using Graphene Nanopores
,”
ACS Nano
,
5
(
11
), pp.
8842
8851
.10.1021/nn202989w
19.
Saha
,
K. K.
,
Drndic
,
M.
, and
Nikolic
,
B. K.
,
2012
, “
DNA Base-Specific Modulation of Microampere Transverse Edge Currents Through a Metallic Graphene Nanoribbon With a Nanopore
,”
Nano Lett.
,
12
(
1
), pp.
50
55
.10.1021/nl202870y
20.
Min
,
S. K.
,
Kim
,
W. Y.
,
Cho
,
Y.
, and
Kim
,
K. S.
,
2011
, “
Fast DNA Sequencing With a Graphene-Based Nanochannel Device
,”
Nat. Nanotechnol.
,
6
(
3
), pp.
162
165
.10.1038/nnano.2010.283
21.
Rappi
,
A. K.
,
Casewit
,
C. J.
,
Colwell
,
K. S.
,
Goddard
,
W. A.
, and
Skid
,
W. M.
,
1992
, “
UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations
,”
J. Am. Chem. Soc.
,
114
(
25
), pp.
10024
10035
.10.1021/ja00051a040
22.
Rappe
,
A. K.
, and
Goddard
,
W. A.
,
1991
, “
Charge Equilibration for Molecular Dnamics Simulations
,”
J. Phys. Chem.
,
95
(
8
), pp.
3358
3363
.10.1021/j100161a070
23.
Kessler
,
C.
, and
Manta
,
V.
,
1990
, “
Specificity of Restriction Endonucleases and DNA Modification Methyltransferases—A Review (Edition 3)
,”
Gene
,
92
(
1-2
), pp.
1
240
.10.1016/0378-1119(90)90486-B
24.
Li
,
T.
,
Huang
,
S.
,
Jiang
,
W. Z.
,
Wright
,
D.
,
Spalding
,
M. H.
,
Weeks
,
D. P.
, and
Yang
,
B.
,
2011
, “
TAL Nucleases (TALNs): Hybrid Proteins Composed of TAL Effectors and FokI DNA-Cleavage Domain
,”
Nucl. Acids Res.
,
39
(
1
), pp.
359
372
.10.1093/nar/gkq704
25.
Andersen
,
H. C.
,
1980
, “
Molecular Dynamics Simulations at Constant Pressure and/or Temperature
,”
J. Chem. Phys.
,
72
(
4
), pp.
2384
2393
.10.1063/1.439486
26.
Johnson
,
R. R.
,
Kohlmeyer
,
A.
,
Johnson
,
A. T. C.
, and
Klein
,
M. L.
,
2009
, “
Free Energy Landscape of a DNA-Carbon Nanotube Hybrid Using Replica Exchange Molecular Dynamics
,”
Nano Lett.
,
9
(
2
), pp.
537
541
.10.1021/nl802645d
27.
Johnson
,
R. R.
,
Johnson
,
A. T. C.
, and
Klein
,
M. L.
,
2008
, “
Probing the Structure of DNA-Carbon Nanotube Hybrids With Molecular Dynamics
,”
Nano Lett.
,
8
(
1
), pp.
69
75
.10.1021/nl071909j
You do not currently have access to this content.