Nanotechnology is presently seen as one of the most promising approaches in the field of materials science toward the development of advanced materials for future engineering applications. We report on the preparation of transparent elastomer based on polyurethane–PEG400/PEG2000–acrylate copolymers. UV curing was pursued. In order to render the polymer hydrophilic, a poly(ethylene glycol) (PEG) chain is used as the polyol portion of the polyurethane. The molecular weight of the PEG chain was matrix from PEG2000 g/mol and PEG400 at 1:3 ratio, respectively. An aliphatic di-isocyanate, namely, isophorone di-isocyanate (IPDI), was used to obtain transparent samples. A PEG-IPDI polymer was produced in the first step. 2-hydoxyethyl acrylate (HEA) was added to react with the excess of IPDI. Dibutyltin dilaureate (DBTL) was employed as the catalyst for formation of the urethane bond. Cross-linking occurred via free radical polymerization of the acrylate group. Nano dry silica powder (Aerosil R7200) is economical and widely used in the industry. The nanoparticles were dispersed in the polyurethane solution in the presence of photo-initaitor by using Ultra-Turrax homogenizer, and the resulting polyurethane nanocomposite solution was molded in the mold glass at room temperature. UV curing was achieved in few seconds. It is noticed that the inorganic filler can be used up to 5% (wt/wt) without affecting the transparency of the polyurethane elastomer sheets. Nanocomposites showed significantly enhanced mechanical properties at 3% (wt/wt). Optical absorption measurements show that the fundamental absorption edge obeys Tauc’s relation for the allowed nondirect transition. Optical band gap (Eg) of the polyurethane (PU)/Aerosil R7200 nanocomposites decreases with the increase of nanosilica content from 1% to 5%. Good mechanical and optical properties make the polyurethane nanocomposites good candidate for different applications such as thin film coating and photovoltaic.

References

References
1.
Oertel
,
G.
, 1994,
Polyurethane Handbook
,
2nd ed.
,
Carl Hanser Verlag
,
Munich
.
2.
Hepburn
,
C.
, 1992,
Polyurethane Elastomers
,
Elsevier Science
,
New York
.
3.
Sherif
,
S. A.
,
Sadek
,
M. A.
,
Ashour
,
F. H.
, and
Bassyouni
,
M.
, 2009, “
Effects of Surface Treatment of Ground Rice Husk on the Polyurethane Based on Castor Oil
,”
Polym. Polym. Compos.
,
17
(
8
), pp.
467
471
.
4.
Bassyouni
,
M.
,
Sherif
,
S. A.
,
Sadek
,
M. A.
, and
Ashour
,
F. H.
, 2012, “
Synthesis and Characterization of Polyurethane-Treated Waste Milled Light Bulbs Composites
,”
Composites, Part B
,
43
(
3
), pp.
1439
1444
.
5.
Alexandre
,
M.
, and
Dubois
,
P.
, 2000, “
Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials
,”
Mater. Sci. Eng.
,
28
(
1-2
), pp.
1
63
.
6.
Oh
,
S. B.
,
Kim
,
Y. J.
, and
Kim
,
J. H.
, 2006, “
Preparation and Properties of Polyimide Nanocomposites via a Soluble Polyisoimide Precursor
,”
J. Appl. Polym. Sci.
,
99
(
3
), pp.
869
874
.
7.
Park
,
S. J.
,
Li
,
K.
, and
Hong
,
S. K.
, 2005, “
Preparation and Characterization of Layered Silicate-Modified Ultrahigh-Molecular-Weight Polyethylene Nanocomposites
,”
J. Ind. Eng. Chem.
,
11
, pp.
561
566
.
8.
Studer
,
K.
,
Decker
,
C.
,
Beck
,
E.
, and
Schwalm
,
R.
, 2003, “
Overcoming Oxygen Inhibition in UV-Curing of Acrylate Coatings by Carbon Dioxide Inerting, Part I
,”
Prog. Org. Coat.
,
48
, pp.
92
100
.
9.
Ong
,
I. W.
,
Julia
,
M.
,
Wilson
,
C. B.
, and
Robert
,
S.
, 2006, “
Antimicrobial Radiation Curable Coating
,” U.S. Patent No. 7098256.
10.
Studer
,
K.
,
Decker
,
C.
,
Beck
,
E.
, and
Schwalm
,
R.
, 2003, “
Overcoming Oxygen Inhibition in UV-Curing of Acrylate Coatings by Carbon Dioxide Inerting, Part II
,”
Prog. Org. Coat.
,
48
, pp.
101
111
.
11.
Zoromba
,
M.
, 2009, “
Preparation and Characterization of New Nanostructured Organic/Inorganic Composite Coatings for Anti-Fog Applications
,” Ph.D. thesis, Institute of Physical Chemistry, Clausthal University of Technology, Germany.
12.
Hohenberger
,
W.
, 2001, “
Fillers and Reinforcements/Coupling Agents
,”
Plastics Additives Handbook
,
H.
Zweifel
, ed.,
Hanser
,
München
, pp.
901
943
.
13.
Jana
,
S. C.
, and
Jain
,
S.
, 2001,
Proceedings of 59th ANTEC (SPE)
, Vol.
2
, pp.
2180
.
14.
Zhou
,
S.
,
Wu
,
L.
,
Sun
,
J.
, and
Shen
,
W.
, 2002, “
The Change of the Properties of Acrylic-Based Polyurethane via Addition of Nano-Silica
,”
Prog. Org. Coat.
,
45
, pp.
33
42
.
15.
Petrović
,
Z. S.
, and
Zhang
,
W.
, 2000, “
Glassy and Elastomeric Polyurethanes Filled With Nano-Silica Particles
,”
Mater. Sci. Forum
,
352
, pp.
171
176
.
16.
Jasmund
,
K.
, and
Lagaly
,
G.
, eds., 1993,
Tonminerale und Tone Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt
,
Steinkopff
,
Darmstadt
.
17.
Javni
,
I.
,
Petrović
,
Z. S.
, and
Waddon
,
A.
, 1998,
Polyurethanes Expo’98
, Dallas, TX, Sept. 17–20.
18.
Chen
,
Y.
,
Zhou
,
S.
,
Yang
,
H.
, and
Wu
,
L.
, 2005, “
Structure and Properties of Polyurethane/Nanosilica Composites
,”
J. Appl. Polym. Sci.
,
95
, pp.
1032
1039
.
19.
Khudyakov
,
I. V.
,
Zopf
,
D. R.
, and
Turro
,
N. J.
, 2009, “
Polyurethane Nanocomposites
,”
Des. Monomers Polym.
,
12
, pp.
279
290
.
20.
Gofman
,
J. V.
, and
Abalov
,
I. V.
, 2009, “
Peculiarities of Mechanical Behavior of Films of Polyurethanesilica Nanocomposites Formed by the Parallel Synthesis Method
,”
Acta Geodyn. Geomater.
,
6
(
2
), pp.
187
192
.
21.
Lim
,
H.
,
Kim
,
S. H.
, and
Kim
,
B. K.
, 2008, “
Effects of Silicon Surfactant in Rigid Polyurethane Foams
,”
Express Polym. Lett.
,
2
(
3
), pp.
194
200
.
22.
Yamasaki
,
S.
,
Nishiguchi
,
D.
,
Ken
,
K.
, and,
Furukawa
,
M.
, 2007, “
Effects of Polymerization Method on Structure and Properties of Thermoplastic Polyurethanes
,”
J. Polym. Sci., Part B: Polym. Phys.
,
45
, pp.
800
814
.
23.
Ahn
,
T. O.
,
Choi
,
I. S.
,
Jeong
,
H. M.
, and
Cho
,
K.
, 1993, “
Thermal and Mechanical Properties of Thermoplastic Polyurethane Elastomers From Different Polymerization Methods
,”
Polym. Int.
,
31
, pp.
329
333
.
24.
Snaith
,
H. J.
, and
Schmidt-Mende
,
L.
, 2007, “
Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells
,”
Adv. Mater.
,
19
, pp.
3187
3200
.
25.
Davis
,
E. A.
, and
Mott
,
N. F.
, 1970, “
Conduction in Non-Crystalline Systems V. Conductivity, Optical Absorption and Photoconductivity in Amorphous Semiconductors
,”
Philos. Mag.
,
22
, pp.
903
922
.
26.
Cherepanov
,
G. P.
, ed., 1998,
Fracture: A Topical Encyclopedia of Current Knowledge
,
Krieger Publishing Co.
,
New York
, pp.
892
.
27.
Fritzsche
,
H.
, 1993, “
The Origin of Reversible and Irreversible Photostructural Changes in Chalcogenide Glasses
,”
Philos. Mag. B
,
68
, pp.
561
572
.
You do not currently have access to this content.