In this initial study, the effect of hydrodynamic flow on lysozyme structure and function was investigated using a microchannel device. Protein was subjected to bubbly cavitation as well as noncavitating flow conditions at pH 4.8 and 25 °C. Interestingly, time course analyses indicated that the secondary structure content, the hydrodynamic diameter, and enzymatic activity of lysozyme were unaffected by cavitation. However, noncavitating flow conditions did induce a decrease of the hydrodynamic diameter. The corresponding structural change was subtle to the extent that bioactivity was marginally suppressed. Moreover, native diameter and bioactivity could be fully restored following a brief period of ultrasonication. The findings encouraged further study of various hydrodynamic flow conditions in order to better ascertain the potential risks and benefits of invasive hydrodynamic cavitation in medicine. The results also served to highlight the counter-intuitive notion that proteins need not necessarily be denatured in high-shear media, risks that typically correlate well with forcefully agitated solutions.

References

References
1.
Moholkar
,
V. S.
,
Senthil Kumar
,
P.
, and
Pandit
,
A. B.
, 1999, “
Hydrodynamic Cavitation for Sonochemical Effects
,”
Ultrason. Sonochem.
,
6
(
1–2
), pp.
53
65
.
2.
Kosar
,
A.
,
Sesen
,
M.
,
Itah
,
Z.
,
Oral
,
O.
, and
Gozuacik
,
D.
, “
Bubbly Cavitating Flow Generation and Investigation of Its Erosional Nature for Biomedical Applications
,”
IEEE Trans. Biomed. Eng.
,
58
, pp.
1337
1346
.
3.
Kosar
,
A.
,
Akbas
,
A.
,
Sahin
,
O.
,
Kubilay
,
A.
,
Oral
,
O.
, and
Gozuacik
,
D.
, 2009, “
Bubbly Cavitating Flow Generation and Investigation of Its Erosional Nature for Biomedical Applications
,”
Proceedings of 2nd Micro and Nano Flows Conference
,
West London
,
United Kingdom
.
4.
Cohen
,
F. E.
, and
Kelly
,
J. W.
, 2003, “
Therapeutic Approaches to Protein-Misfolding Diseases
,”
Nature (London)
,
426
, pp.
905
909
.
5.
Thomasa
,
P. J.
,
Qua
,
B. H.
, and
Pedersen
,
P. L.
, 1995, “
Defective Protein Folding as a Basis of Human Disease
,”
Trends Biochem. Sci.
,
20
(
11
), pp.
456
459
.
6.
Marchioni
,
C.
,
Riccardi
,
E.
,
Spinelli
,
S.
,
Dell’Unto
,
F.
,
Grimaldi
,
P.
,
Bedini
,
A.
,
Giliberti
,
C.
,
Giuliani
,
L.
,
Palomba
,
R.
, and
CongiuCastellano
,
A.
, 2009, “
Structural Changes Induced in Proteins by Therapeutic Ultrasounds
,”
Ultrasonics
,
49
(
6–7
), pp.
569
576
.
7.
Gulseren
,
I.
,
Güzey
,
D.
,
Bruce
,
B. D.
, and
Weiss
,
J.
, 2007, “
Structural and Functional Changes in Ultrasonicated Bovine Serum Albumin Solutions
,”
Ultrason. Sonochem.
,
14
(
2
), pp.
173
183
.
8.
Jollès
,
P.
, 1996,
Lysozymes—Model Enzymes in Biochemistry and Biology
,
1st ed.
,
Birkhäuser Verlag
,
Basel, Boston
.
9.
Pace
,
N. C.
,
Vajdos
,
F.
,
Fee
,
L.
,
Grimsley
,
G.
, and
Gray
,
T.
, 1995, “
How to Measure and Predict the Molar Absorption Coefficient of a Protein
,”
Protein Sci.
,
4
(
11
), pp.
2411
2423
.
10.
Greenfield
,
N. J.
, 2006, “
Using Circular Dichroism Spectra to Estimate Protein Secondary Structure
,”
Nat. Protoc.
,
1
(
6
), pp.
2876
2890
.
11.
Bohm
,
G.
,
Muhr
,
R.
,
Jaenicke
,
R.
, 1992, “
Quantitative Analysis of Protein Far UV Circular Dichroism Spectra by Neural Networks
,”
Protein Eng.
,
5
(
3
), pp.
191
195
.
12.
Deleage
,
G.
, and
Geourjon
,
C.
, 1993, “
An Interactive Graphic Program for Calculating the Secondary Structure Content of Proteins From Circular Dichroism Spectrum
,” CABIOS,
Comput. Appl. Biosci.
,
9
(
2
), pp.
197
199
.
13.
MalvernZetasizer Nano Series User Manual
, 2004, MANO 317, Issue
11
,
Malvern Instruments Ltd.
,
Worchestershire
.
14.
Mach
,
H.
,
Volkin
,
B.
,
Burke
,
C. J.
, and
Middaugh
,
C. R.
, 1995, “
Ultraviolet Absorption Spectroscopy
,”
Methods Mol. Biol.
,
40
, pp.
91
114
.
15.
Laemmli
,
U. K.
, 1970, “
Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4
,”
Nature (London)
,
227
, pp.
680
685
.
16.
Bonincontro
,
A.
,
Bultrini
,
E.
,
Calandrinib
,
V.
, and
Onorib
,
G.
, 2001, “
Conformational Changes of Proteins in Aqueous Solution Induced by Temperature in the Pre-Melting Region
,”
Phys. Chem. Chem. Phys.
,
3
, pp.
3811
3813
.
17.
Parmar
,
A. S.
, and
Muschol
,
M.
, 2009, “
Hydration and Hydrodynamic Interactions of Lysozyme: Effects of Chaotropic versus Kosmotropic Ions
,”
Biophys. J.
,
97
(
2
), pp.
590
598
.
18.
Arai
,
S.
, and
Hirai
,
M.
, 1999, “
Reversibility and Hierarchy of Thermal Transition of Hen Egg-White Lysozyme Studied by Small-Angle X-Ray Scattering
,”
Biophys. J.
,
76
(
4
), pp.
2192
2197
.
19.
Hédoux
,
A.
,
Ionov
,
R.
,
Willart
,
J. F.
,
Lerbret
,
A.
,
Affouard
,
F.
,
Guinet
,
Y.
,
Descamps
,
M.
,
Prévost
,
D.
,
Paccou
,
L.
, and
Danéde
,
F.
, 2006, “
Evidence of a Two-Stage Thermal Denaturation Process in Lysozyme: A Raman Scattering and Differential Scanning Calorimetry Investigation
,”
J. Chem. Phys.
,
124
, p.
14703
.
20.
Pike
,
A. C. W.
, and
Acharya
,
K. R.
, 1994, “
A Structural Basis for the Interaction of Iysozme With Urea
,”
Protein Sci.
,
3
, pp.
706
710
.
21.
Serrano
,
L.
,
Matouschek
,
A.
,
Fersht
,
A. R.
, 1992, “
The Folding of an Enzyme. III. Structure of the Transition State for Unfolding of Barnase Analysed by a Protein Engineering Procedure
,”
J. Mol. Biol.
,
224
, pp.
805
818
.
22.
Serrano
,
L.
,
Matouschek
,
A.
, and
Fersht
,
A. R.
, 1992, “
The Folding of an Enzyme. VI. The Folding Pathway of Barnase: Comparison With Theoretical Models
,”
J. Mol. Biol.
,
224
, pp.
847
859
.
23.
Oliva
,
A.
,
Santoveña
,
A.
,
Faria
,
J.
, and
Llabre’s
,
M.
, 2003, “
Effect of High Shear Rate on Stability of Proteins: Kinetic Study
,”
J. Pharm. Biomed. Anal.
,
33
(
2
), pp.
145
155
.
24.
Sah
,
H.
, 1999, “
Stabilization of Proteins Against Methylene Chloride/Water Interface Induced Denaturation and Aggregation
,”
J. Control. Release
58
(
2
), pp.
143
151
.
25.
Schmitke
,
J. L.
,
Wescott
,
C. R.
, and
Klibanov
,
A. M.
, 1996, “
The Mechanistic Dissection of the Plunge in Enzymatic Activity Upon Transition From Water to Anhydrous Solvents
,”
J. Am. Chem. Soc.
,
118
, pp.
3360
3365
.
26.
Hemat
,
R. A. S.
, 2004,
Principles of Orthomolecularism
,
1st ed.
,
Urotext
,
London
.
27.
Ashton
,
L.
,
Dusting
,
J.
,
Imomoh
,
E.
,
Balabani
,
S.
, and
Banch
,
E. W.
, 2009, “
Shear-Induced Unfolding of Lysozyme Monitored
in situ,”
Biophys. J.
,
96
(
10
), pp.
4231
4236
.
You do not currently have access to this content.