The unique properties of carbon nanotube (CNT) have made it very attractive as reinforcement in polymer nanocomposites in the hope of effectively improving the mechanical properties. In order to explore the effects of three appealing influencing factors, i.e., acid treatment, pressured curing, and liquid rubber (LR) on mechanical properties of nanocomposites, tensile tests, and single-edge notched bending (SENB) tests are carried out for four types of CNT-reinforced nanocomposites. Compared with type I of nanocomposites using pristine multiwalled carbon nanotube (MWCNT) as reinforcement for epoxy, which are termed as Epoxy/MWCNT, type II of Epoxy/MWCNT-COOH nanocomposites with acid-treated MWCNTs as reinforcement, show obvious improvement on tensile properties and fracture toughness. This positive effect of acid treatment can be attributed to better dispersion of CNTs and stronger interface based on the corresponding fracture surfaces. For type III of P-Epoxy/MWCNT-COOH nanocomposites under pressured curing, although the voids in samples are decreased effectively and the interface is strengthened, there is no expected positive results because of severe CNTs agglomeration. For type IV of P-Epoxy/LR/MWCNT-COOH nanocomposites, addition of LR results in at least around a threefold increase in fracture toughness compared with that of P-Epoxy/MWCNT-COOH, indicating the amazing effect of LR. The present work provides much more choices for fabricating specific CNT-reinforced nanocomposites with desired properties by reasonably combining proper fabrication conditions including acid treatment, pressured curing, liquid rubber with polymer matrix, and reinforcement loading.

References

References
1.
Ajayan
,
P.
,
Stephan
,
O.
,
Colliex
,
C.
, and
Trauth
,
D.
, 1994, “
Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite
,”
Science
,
265
, pp.
1212
1214
.
2.
Andrews
,
R.
, and
Weisenberger
,
M. C.
, 2004, “
Carbon Nanotube Polymer Composites
,”
Curr. Opin. Solid State Mater. Sci.
,
8
, pp.
31
37
.
3.
Breure
,
O.
, and
Sundararaj
,
U.
, 2004, “
Big Returns From Small Fibers: A Review of Polymer/Carbon Nanotube Composites
,”
Polym. Compos.
,
25
(
6
), pp.
630
641
.
4.
Ma
,
P. C.
,
Siddiqui
,
N. A.
,
Marom
,
G.
, and
Kim
,
J. K.
, 2010, “
Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review
,”
Composites, Part A
,
41
, pp.
1345
1367
.
5.
Chou
,
T. W.
,
Gao
,
L.
,
Thostenson
,
E. T.
,
Zhang
,
Z.
, and
Byun
,
J. H.
, 2010, “
An Assessment of the Science and Technology of Carbon Nanotube-Based Fibers and Composites
,”
Compos. Sci. Technol.
,
70
, pp.
1
19
.
6.
Schadler
,
L. S.
,
Giannaris
,
S. C.
, and
Ajayan
,
P. M.
, 1998, “
Load Transfer in Carbon Nanotube Epoxy Composites
,”
Appl. Phys. Lett.
,
73
(
26
), pp.
3824
3844
.
7.
Breton
,
Y.
,
Delpeux
,
S.
,
Benoit
,
R.
,
Salvetat
,
J. P.
,
Sinturel
,
C.
,
Beguin
,
F.
,
Bonnamy
,
S.
,
Desarmot
,
G.
, and
Boufendi
,
L.
, 2002, “
Functionalization of Multiwall Carbon Nanotubes: Properties of Nanotubes-Epoxy Composites
,”
Mol. Cryst. Liq. Cryst.
,
387
, pp.
135
140
.
8.
Ogasawara
,
T.
,
Ishida
,
Y.
,
Ishikawa
,
T.
, and
Yokota
,
R.
, 2004, “
Characterization of Multi-Walled Carbon Nanotube/Phenylethynyl Terminated Polyimide Composites
,”
Composites, Part A
,
35
, pp.
67
74
.
9.
Breton
,
Y.
,
Desarmot
,
G.
,
Salevetat
,
J. P.
,
Delpeux
,
S.
,
Sinturel
,
C.
, and
Beguin
,
F.
, 2004, “
Mechanical Properties of Multiwall Carbon Nanotubes/Epoxy Composites: Influence of Network Morphology
,”
Carbon
,
42
, pp.
1027
1030
.
10.
Bai
,
J. B.
, and
Allaoui
,
A.
, 2003, “
Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites—Experimental Investigation
,”
Composites, Part A
,
34
, pp.
689
694
.
11.
Yeh
,
M. K.
,
Hsieh
,
T. H.
, and
Tai
,
N. H.
, 2008, “
Fabrication and Mechanical Properties of Multi-Walled Carbon Nanotubes/Epoxy Nanocomposites
,”
Mater. Sci. Eng., A
,
483-484
, pp.
289
292
.
12.
Koval’chuk
,
A. A.
,
Shevchenko
,
V. G.
,
Shchegolikhin
,
A. N.
,
Nedorezova
,
P. M.
,
Klyamkina
,
A. N.
, and
Aladyshev
,
A. M.
, 2008, “
Effect of Carbon Nanotube Functionalization on the Structural and Mechanical Properties of Polypropylene/MWCNT Composites
,”
Macromolecules
,
41
(
20
), pp.
7536
7542
.
13.
Kim
,
K. H.
, and
Jo
,
W. H.
, 2008, “
Improvement of Tensile Properties of Poly(Methylmethacrylate) by Dispersing Multi-Walled Carbon Nanotubes Functionalized With Poly(3-Hexylthiophene)-Graft-Poly(Methyl Methacrylate)
,”
Compos. Sci. Technol.
,
68
, pp.
2120
2124
.
14.
Meincke
,
O.
,
Kaempfer
,
D.
,
Weickmann
,
H.
,
Friedrich
,
C.
,
Vathauer
,
M.
, and
Warth
,
H.
, 2004, “
Mechanical Properties and Electrical Conductivity of Carbon-Nanotube Filled Polyamide-6 and Its Blends With Acrylonitrile/Butadiene/Styrene
,”
Polymer
,
45
, pp.
739
748
.
15.
Mahfuz
,
H.
,
Adnan
,
A.
,
Rangari
,
V. K.
, and
Jeelani
,
S.
, 2005, “
Manufacturing and Characterization of Carbon Nanotube/Polyethylene Composites
,”
Int. J. Nanosci.
,
4
(
1
), pp.
55
72
.
16.
Yuen
,
S. M.
,
Ma
,
C. C. M.
,
Lin
,
Y. Y.
, and
Kuan
,
H. C.
, 2007, “
Preparation, Morphology and Properties of Acid and Amine Modified Multiwalled Carbon Nanotube/Polyimide Composite
,”
Compos. Sci. Technol.
,
67
, pp.
2564
2573
.
17.
Byrne
,
M. T.
,
McNamee
,
W. P.
,
Gun’ko
,
Y. K.
, 2008, “
Chemical Functionalization of Carbon Nanotubes for the Mechanical Reinforcement of Polystyrene Composites
,”
Nanotechnology
,
19
, p.
415707
.
18.
Gojny
,
F. H.
,
Wichmann
,
M. H. G.
,
Fiedler
,
B.
, and
Schulte
,
K.
, 2005, “
Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study
,”
Compos. Sci. Technol.
,
65
, pp.
2300
2313
.
19.
Thostenson
,
E. T.
, and
Chou
,
T. W.
, 2006, “
Processing-Structure-Multi-Functional Property Relationship in Carbon Nanotube/Epoxy Composites
,”
Carbon
,
44
, pp.
3022
3029
.
20.
Ma
,
P. C.
,
Kim
,
J. K.
, and
Tang
,
B. Z.
, 2007, “
Effects of Silane Functionalization on the Properties of Carbon Nanotube/Epoxy Nanocomposites
,”
Compos. Sci. Technol.
,
67
, pp.
2965
2972
.
21.
Yang
,
B. X.
,
Pramoda
,
K. P.
,
Xu
,
G. Q.
, and
Goh
,
S. H.
, 2007, “
Mechanical Reinforcement of Polyethylene Using Polyethylene-Grafted Multiwalled Carbon Nanotubes
,”
Adv. Funct. Mater.
,
17
, pp.
2062
2069
.
22.
Liu
,
J.
,
Rinzler
,
A. G.
,
Dai
,
H.
,
Hafner
,
J. H.
,
Bradley
,
R. K.
,
Boul
,
P. J.
,
Lu
,
A.
,
Iverson
,
T.
,
Shelimov
,
K.
,
Huffman
,
C. B.
,
Rodriguez-Macias
,
F.
,
Shon
,
Y. S.
,
Lee
,
T. R.
,
Colbert
,
D. T.
,
Smalley
,
R. E.
, 1998, “
Fullerene Pipes
,”
Science
,
280
(
22
), pp.
1253
1256
.
23.
Hu
,
N.
,
Li
,
Y.
,
Nakamura
,
T.
,
Katsumata
,
T.
,
Koshikawa
,
T.
, and
Arai
,
M.
, 2012, “
Reinforcement Effects of MWCNT and VGCF in Bulk Composites and Interlayer of CFRP Laminates
,”
Composites, Part B
,
43
, pp.
3
9
.
24.
Cox
,
H. L.
, 1952, “
The Elasticity and Strength of Paper and Other Fibrous Materials
,”
Br. J. Appl. Phys.
,
3
, pp.
72
79
.
25.
Fukuda
,
H.
, and
Chou
,
T. W.
, 1981, “
A Probabilistic Theory for the Strength of Short Fibre Composites
,”
J. Mater. Sci.
,
16
, pp.
1088
1096
.
26.
Fukuda
,
H.
, and
Chou
,
T. W.
, 1982, “
A Probabilistic Theory of the Strength of Short-Fibre Composites With Variable Fibre Length and Orientation
,”
J. Mater. Sci.
,
17
, pp.
1003
1011
.
27.
Yamamoto
,
G.
,
Omori
,
M.
,
Hashida
,
T.
, and
Kimura
,
H.
, 2008, “
A Novel Structure for Carbon Nanotube Reinforced Alumina Composites With Improved Mechanical Properties
,”
Nanotechnology
,
19
, p.
315708
.
28.
Yu
,
M. F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
, 2000, “
Strength and Breaking Mechanism of Multi-Walled Carbon Nanotubes Under Tensile Load
,”
Science
,
287
, pp.
637
640
.
You do not currently have access to this content.