On the basis of the continuum approximation along with Lennard–Jones potential function, new semi-analytical expressions are presented to evaluate the van der Waals interactions between an ellipsoidal fullerene and a semi-infinite single-walled carbon nanotube. Using direct method, these expressions are also extended to model ellipsoidal carbon onions inside multiwalled carbon nanotubes. In addition, acceptance and suction energies which are two noticeable issues for medical applications such as drug delivery are determined. Neglecting the frictional effects and by imposing some simplifying assumptions on the van der Waals interaction force, a simple formula is given to evaluate the oscillation frequency of ellipsoidal carbon onions inside multiwalled carbon nanotubes. Also, the effects of the number of tube shells and ellipsoidal carbon onion shells on the oscillatory behavior are examined. It is shown that there exists an optimal value for the number of tube shells beyond which the oscillation frequency remains unchanged.

References

References
1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
, pp.
56
58.
2.
Zheng
,
Q.
, and
Jiang
,
Q.
, 2002, “
Multiwalled Carbon Nanotubes as Gigahertz Oscillators
,”
Phys. Rev. Lett.
,
88
, p.
045503
.
3.
Sinnott
,
S. B.
, and
Andrews
,
R.
, 2001, “
Carbon Nanotubes: Synthesis, Properties, and Applications
,”
Crit. Rev. Solid State Mater. Sci.
,
26
, pp.
145
249.
4.
Forro
,
L.
, 2000, “
Nanotechnology: Beyond Gedanken Experiments
,”
Science
,
289
, pp.
560
561.
5.
Hilder
,
T. A.
, and
Hill
,
J. M.
, 2007, “
Orbiting Atoms and C60 Fullerenes Inside Carbon Nanotori
,”
J. Appl. Phys.
,
101
, p.
064319
.
6.
Cox
,
B. J.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2008, “
Mechanics of Nanotubes Oscillating in Carbon Nanotube Bundles
,”
Proc. R. Soc. A
,
464
, pp.
691
710.
7.
Cumings
,
J.
, and
Zettl
,
A.
, 2000, “
Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
,
289
, pp.
602
604.
8.
Ma
,
C. C.
,
Zhao
,
Y.
,
Yam
,
C.-Y.
,
Chen
,
G. H.
, and
Jiang
,
Q.
, 2005, “
A Tribological Study of Double-Walled and Triple-Walled Carbon Nanotube Oscillators
,”
Nanotechnology
,
16
, pp.
1253
1264.
9.
Kang
,
J. W.
, and
Hwang
,
H. J.
, 2006, “
Operating Frequency in a Triple-Walled Carbon-Nanotube Oscillator
,”
J. Korean Phys. Soc.
,
49
, pp.
1488
1492.
10.
Kang
,
J. W.
,
Song
,
K. O.
,
Hwang
,
H. J.
, and
Jiang
,
Q.
, 2006, “
Nanotube Oscillator Based on a Short Single-Walled Carbon Nanotube Bundle
,”
Nanotechnology
,
17
, pp.
2250
2258.
11.
Legoas
,
S. B.
,
Coluci
,
V. R.
,
Braga
,
S. F.
,
Coura
,
P. Z.
,
Dantas
,
S. O.
, and
Galvao
,
D. S.
, 2003, “
Molecular-Dynamics Simulations of Carbon Nanotubes as Gigahertz Oscillators
,”
Phys. Rev. Lett.
,
90
, p.
055504
.
12.
Legoas
,
S. B.
,
Coluci
,
V. R.
,
Braga
,
S. F.
,
Coura
,
P. Z.
,
Dantas
,
S. O.
, and
Galvao
,
D. S.
, 2004, “
Gigahertz Nanomechanical Oscillators Based on Carbon Nanotubes
,”
Nanotechnology
,
15
, pp.
S184
S189.
13.
Rivera
,
J. L.
,
McCabe
,
C.
, and
Cummings
,
P. T.
, 2003, “
Oscillatory Behavior of Double-Walled Nanotubes Under Extension: A Simple Nanoscale Damped Spring
,”
Nano Lett.
,
3
, pp.
1001
1005.
14.
Liu
,
P.
,
Zhang
,
Y. W.
, and
Lu
,
C.
, 2005, “
Oscillatory Behavior of Gigahertz Oscillators Based on Multiwalled Carbon Nanotubes
,”
J. Appl. Phys.
,
98
, p.
014301
.
15.
Liu
,
P.
,
Zhang
,
Y. W.
, and
Lu
,
C.
, 2005, “
Oscillatory Behavior of C60-Nanotube Oscillators: A Molecular-Dynamics Study
,”
J. Appl. Phys.
,
97
, p.
094313
.
16.
Rivera
,
J. L.
,
McCabe
,
C.
, and
Cummings
,
P. T.
, 2005, “
The Oscillatory Damped Behavior of Incommensurate Double-Walled Carbon Nanotubes
,”
Nanotechnology
,
16
, pp.
186
198.
17.
Guo
,
W.
,
Guo
,
Y.
,
Gao
,
H.
,
Zheng
,
Q.
, and
Zhong
,
W.
, 2003, “
Energy Dissipation in Gigahertz Oscillators From Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
91
, p.
125501
.
18.
Zhao
,
Y.
,
Ma
,
C.-C.
,
Chen
,
G. H.
, and
Jiang
,
Q.
, 2003, “
Energy Dissipation Mechanisms in Carbon Nanotube Oscillators
,”
Phys. Rev. Lett.
,
91
, p.
175504
.
19.
Servantie
,
J.
, and
Gaspard
,
P.
, 2006, “
Translational Dynamics and Friction in Double-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
73
, p.
125428
.
20.
Ohshima
,
H.
, and
Hyono
,
A.
, 2009, “
The van der Waals Interaction Between Two Torus-Shaped Colloidal Particles
,”
J. Colloid Interface Sci.
,
332
, pp.
251
253.
21.
Baowan
,
D.
, and
Hill
,
J. M.
, 2007, “
Force Distribution for Double-Walled Carbon Nanotubes and Gigahertz Oscillators
,”
Z. Angew. Math. Phys.
,
58
, pp.
857
875.
22.
Alisafaei
,
F.
,
Ansari
,
R.
, and
Rouhi
,
H.
, 2011, “
Continuum Modeling of van der Waals Interaction Force Between Carbon Nanocones and Carbon Nanotubes
,”
J. Nanotechnol. Eng. Med.
,
2
, p.
031002
.
23.
Girifalco
,
L. A.
,
Hodak
,
M.
, and
Lee
,
R. S.
, 2000, “
Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential
,”
Phys. Rev. B
,
62
, pp.
13104
13110.
24.
Hodak
,
M.
, and
Girifalco
,
L. A.
, 2001, “
Fullerenes Inside Carbon Nanotubes and Multi-Walled Carbon Nanotubes: Optimum and Maximum Sizes
,”
Chem. Phys. Lett.
,
350
, pp.
405
411.
25.
Girifalco
,
L. A.
, 1992, “
Molecular Properties of Fullerene in the Gas and Solid Phases
,”
J. Phys. Chem.
,
96
, pp.
858
861.
26.
Girifalco
,
L. A.
, 1995, “
Extended Mie-Grüneisen Theory Applied to C60 in the Disordered fcc Phase
,”
Phys. Rev. B
,
52
, pp.
9910
9916.
27.
Zheng
,
Q.
,
Liu
,
J. Z.
, and
Jiang
,
Q.
, 2002, “
Excess van der Waals Interaction Energy of a Multiwalled Carbon Nanotube With an Extruded Core and the Induced Core Oscillation
,”
Phys. Rev. B
,
65
, p.
245409
.
28.
Ansari
,
R.
, and
Motevalli
,
B.
, 2009, “
The Effects of Geometrical Parameters on Force Distributions and Mechanics of Carbon Nanotubes: A Critical Study
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
4246
4263.
29.
Ansari
,
R.
, and
Motevalli
,
B.
, 2011, “
On New Aspects of Nested Carbon Nanotubes as Gigahertz Oscillators
,”
ASME J. Vib. Acoust.
,
133
, p.
051003
.
30.
Cox
,
B. J.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2007, “
Mechanics of Atoms and Fullerenes in Single-Walled Carbon Nanotubes. II. Oscillatory Behavior
,”
Proc. R. Soc. A
,
463
, pp.
477
494.
31.
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2008, “
Oscillation of Nested Fullerenes (Carbon Onions) in Carbon Nanotubes
,”
J. Nanopart. Res.
,
10
, pp.
665
677.
32.
Thamwattana
,
N.
,
Cox
,
B. J.
, and
Hill
,
J. M.
, 2009, “
Oscillation of Carbon Molecules Inside Carbon Nanotube Bundles
,”
J. Phys. Condens. Matter
,
21
, p.
144214
.
33.
Hilder
,
T. A.
, and
Hill
,
J. M.
, 2007, “
Oscillating Carbon Nanotori Along Carbon Nanotubes
,”
Phys. Rev. B
,
75
, p.
125415
.
34.
Baowan
,
D.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2008, “
Suction Energy and Offset Configuration for Double-Walled Carbon Nanotubes
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
, pp.
1431
1447.
35.
Cox
,
B. J.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2007, “
Mechanics of Atoms and Fullerenes in Single-Walled Carbon Nanotubes. I. Acceptance and Suction Energies
,”
Proc. R. Soc. A
,
463
, pp.
461
476.
36.
Cox
,
B. J.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2007, “
Mechanics of Spheroidal Fullerenes and Carbon Nanotubes for Drug and Gene Delivery
,”
Q. J. Mech. Appl. Math.
,
60
, pp.
231
253.
37.
Cox
,
B. J.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2008, “
Spherical and Spheroidal Fullerenes Entering Carbon Nanotubes
,”
Curr. Appl. Phys.
,
8
, pp.
249
252.
38.
Hilder
,
T. A.
, and
Hill
,
J. M.
, 2008, “
Carbon Nanotubes as Drug Delivery Nanocapsules
,”
Curr. Appl. Phys.
,
8
, pp.
258
261.
39.
Alisafaei
,
F.
, and
Ansari
,
R.
, 2011, “
Mechanics of Concentric Carbon Nanotubes: Interaction Force and Suction Energy
,”
Comput. Mater. Sci.
,
50
, pp.
1406
1413.
40.
Baowan
,
D.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2007, “
Continuum Modeling of Spherical and Spheroidal Carbon Onions
,”
Eur. Phys. J. D
,
44
, pp.
117
123.
You do not currently have access to this content.