In this study, we propose a new nanocomputer component. We investigate the mechanics of a multiwalled carbon nanotube, comprising two symmetrically placed inner tubes and a moveable tube of radius intermediate to the larger and the two smaller tubes. The larger tube has the two fixed smaller tubes located at its ends, and the moveable tube is assumed to be controlled by an applied voltage difference. The tube radii are purposely chosen so that electrons can jump from one tube to another and a current can flow from the larger tube to the moveable one and finally to one of the smaller tubes. The interaction energy for the system is obtained assuming the Lennard-Jones potential together with the continuum approximation. As expected, the system has two symmetrically placed equal minimum energy locations (i.e., the total interaction energies take on minimum values) and by adopting different electrical circuits, the design gives rise to the possibility of using the device either as a memory device or as logic gates. By applying a voltage input to produce an external electrical field and another voltage input to provide a charge on the moving tube, the moving tube provides an output signal which we assume is registered on a meter that is capable of measuring either voltage or charge. We present the basic design rules for such devices and we establish their feasibility for practical realization.

References

References
1.
Moore
,
G. E.
, 1975, “
Progress in Digital Integrated Electronics
,”
Tech. Dig.–Int. Electron Devices Meet.
,
21
, pp.
11
13
.
2.
Arden
,
W.
, and
Muller
,
K. H.
, 1987, “
Physical and Technological Limits in Optical and X-Ray Lithography
,”
Microelectron. Eng.
,
6
, pp.
53
60
.
3.
Harriott
,
L. R.
, 2001, “
Limits of Lithography
,”
Proc. IEEE
,
89
, pp.
366
374
.
4.
Kwon
,
Y. K.
,
Tománek
,
D.
, and
Iijima
,
S.
, 1999, “
Bucky Shuttle Memory Device: Synthetic Approach and Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
,
82
(
7
), pp.
1470
1473
.
5.
Chan
,
Y.
,
Lee
,
R. K. F.
, and
Hill
,
J. M.
, 2011, “
Metallofullerenes in Composite Carbon Nanotubes as a Nanocomputing Memory Device
,”
IEEE Trans. Nanotechnol.
,
10
(
5
), pp.
947
952
.
6.
Lee
,
R. K. F.
, and
Hill
,
J. M.
, 2010, “
Design of a Two-State Shuttle Memory Device
,”
Comput., Mater., Continua
,
20
(
1
), pp.
85
100
.
7.
Xiao
,
S.
,
Andersen
,
D. R.
, and
Yang
,
W.
, 2008, “
Design and Analysis of Nanotube-Based Memory Cells
,”
Nanoscale Res. Lett.
,
3
, pp.
416
420
.
8.
Lee
,
J.
,
Kim
,
H.
,
Kahng
,
S. J.
,
Kim
,
G.
,
Son
,
Y. W.
,
Ihm
,
J.
,
Kato
,
H.
,
Wang
,
Z. W.
,
Okazaki
,
T.
,
Shinohara
,
H.
, and
Kuk
,
Y.
, 2002, “
Bandgap Modulation of Carbon Nanotubes by Encapsulated Metallofullerenes
,”
Nature
,
415
, pp.
1005
1008
.
9.
Kang
,
J. W.
, and
Hwang
,
H. J.
, 2005, “
Schematics and Simulations of Nanomemory Device Based on Nanopeapods
,”
Mater. Sci. Eng., C
,
25
, pp.
843
847
.
10.
Kang
,
J. W.
, and
Hwang
,
H. J.
, 2004, “
Carbon Nanotube Shuttle Memory Device
,”
Carbon
,
42
, pp.
3018
3021
.
11.
Hwang
,
H. J.
,
Byun
,
K. R.
,
Lee
,
J. Y.
, and
Kang
,
J. W.
, 2005, “
A Nanoscale Field Effect Data Storage of Bipolar Endo-Fullerenes Shuttle Device
,”
Curr. Appl. Phys.
,
5
, pp.
609
614
.
12.
Kang
,
J. W.
, and
Hwang
,
H. J.
, 2004, “
A Bucky Shuttle Three-Terminal Switching Device: Classical Molecular Dynamics Study
,”
Physica E
,
23
, pp.
36
44
.
13.
Mizuta
,
H.
,
Müller
,
H. O.
,
Tsukagoshi
,
K.
,
Williams
,
D.
,
Durrani
,
Z.
,
Irvine
,
A.
,
Evans
,
G.
,
Amakawa
,
S.
,
Nakazato
K.
, and
Ahmed
,
H.
, 2001, “
Nanoscale Coulomb Blockade Memory and Logic Devices
,”
Nanotechnology
,
12
, pp.
155
159
.
14.
Derycke
,
V.
,
Martel
,
R.
,
Appenzeller
,
J.
, and
Avouris
,
Ph.
, 2001, “
Carbon Nanotube Inter- and Intramolecular Logic Gates
,”
Nano Lett.
,
1
(
9
), pp.
453
456
.
15.
Huang
,
Y.
,
Duan
,
X.
,
Cui
,
Y.
,
Lauhon
,
L. J.
,
Kim
,
K. H.
, and
Lieber
,
C. M.
, 2001, “
Logic Gates and Computation From Assembled Nanowire Building Blocks
,”
Science
,
294
(
5545
), pp.
1313
1317
.
16.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
, pp.
56
58
.
17.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
, and
Saito
,
R.
, 1995, “
Physics of Carbon Nanotubes
,”
Carbon
,
33
, pp.
883
891
.
18.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
, and
Saito
,
R.
, 1992, “
Carbon Fibers Based on C60 and Their Symmetry
,”
Phys. Rev. B
,
45
, pp.
6234
6242
.
19.
Jishi
,
R. A.
,
Dresselhaus
,
M. S.
, and
Dresselhaus
,
G.
, 1993, “
Symmetry Properties of Chiral Carbon Nanotubes
,”
Phys. Rev. B
,
47
, pp.
16671
16674
.
20.
Hoenlein
,
W.
, 2002, “
New Prospects for Microelectronics Carbon Nanotubes
,”
Jpn. J. Appl. Phys.
, Part 1,
41
(
6B
), pp.
4370
4374
.
21.
Girifalco
,
L. A.
,
Hodak
,
M.
, and
Lee
,
R. S.
, 2000, “
Carbon Nanotubes Buckyballs Ropes and a Universal Graphitic Potential
,”
Phys. Rev. B
,
62
, pp.
13104
13110
.
22.
Rahmat
,
F.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2010, “
Carbon Nanotube Oscillators for Applications as Nanothermometers
,”
J. Phys. A: Math. Theor.
,
43
, p.
405209
.
23.
Baowan
,
D.
, and
Hill
,
J. M.
, 2007, “
Force Distribution for Double-Walled Carbon Nanotubes and Gigahertz Oscillators
,”
Z. Angew. Math. Phys.
,
58
, pp.
857
875
.
24.
Lee
,
R. K. F.
,
Cox
,
B. J.
, and
Hill
,
J. M.
, 2010, “
The Geometric Structure of Single-Walled Nanotubes
,”
Nanoscale
,
2
(
6
), pp.
859
872
.
25.
Uchida
,
K.
,
Okada
,
S.
,
Shiraishi
,
K.
, and
Oshiyama
,
A.
, 2007, “
Quantum Effects in a Double-Walled Carbon Nanotube Capacitor
,”
Phys. Rev. B
,
76
, p.
155436
.
26.
Sarto
,
M. S.
, and
Tamburrano
,
A.
, 2010, “
Single-Conductor Transmission-Line Model of Multiwall Carbon Nanotubes
,”
IEEE Trans. Nanotechnol.
,
9
(
1
), pp.
82
92
.
You do not currently have access to this content.