Characterizing the mechanical characteristics of living cells and cell–biomaterial composite is an important area of research in bone tissue engineering. In this work, an in situ displacement-controlled nanoindentation technique (using Hysitron Triboscope) is developed to perform nanomechanical characterization of living cells (human osteoblasts) and cell–substrate constructs under physiological conditions (cell culture medium; 37 °C). In situ elastic moduli (E) of adsorbed proteins on tissue culture polystyrene (TCPS) under cell culture media were found to be ∼4 GPa as revealed by modulus mapping experiments. The TCPS substrates soaked in cell culture medium showed significant difference in surface nanomechanical properties (up to depths of ∼12 nm) as compared to properties obtained from deeper indentations. Atomic force microscopy (AFM) revealed the cytoskeleton structures such as actin stress fiber networks on flat cells which are believed to impart the structural integrity to cell structure. Load-deformation response of cell was found to be purely elastic in nature, i.e., cell recovers its shape on unloading as indicated by linear loading and unloading curves obtained at 1000 nm indentation depth. The elastic response of cells is obtained during initial cell adhesion (ECell, 1 h, 1000 nm = 4.4–12.4 MPa), cell division (ECell, 2 days, 1000 nm = 1.3–3.0 MPa), and cell spreading (ECell, 2 days, 1000 nm = 6.9–11.6 MPa). Composite nanomechanical responses of cell–TCPS constructs were obtained by indentation at depths of 2000 nm and 3000 nm on cell-seeded TCPS. Elastic properties of cell–substrate composites were mostly dominated by stiff TCPS (EBulk = 5 GPa) lying underneath the cell.

References

References
1.
Van Vliet
,
K. J.
,
Bao
,
G.
, and
Suresh
,
S.
, 2003, “
The Biomechanics Toolbox: Experimental Approaches for Living Cells and Biomolecules
,”
Acta Mater.
,
51
(
19
), pp.
5881
5905
.
2.
Suresh
,
S.
, 2007, “
Biomechanics and Biophysics of Cancer Cells
,”
Acta Biomater.
,
3
(
4
), pp.
413
438
.
3.
Bao
,
G.
, and
Suresh
,
S.
, 2003, “
Cell and Molecular Mechanics of Biological Materials
,”
Nature Mater.
,
2
(
11
), pp.
715
725
.
4.
Ingber
,
D. E.
, 2003, “
Mechanobiology and Diseases of Mechanotransduction
,”
Ann. Med.
,
35
(
8
), pp.
564
577
.
5.
Wang
,
N.
,
Butler
,
J. P.
, and
Ingber
,
D. E.
, 1993, “
Mechanotransduction Across the Cell-Surface and Through the Cytoskeleton
,”
Science
,
260
(
5111
), pp.
1124
1127
.
6.
Yim
,
E. K. F.
,
Darling
,
E. M.
,
Kulangara
,
K.
,
Guilak
,
F.
, and
Leong
,
K. W.
, 2010, “
Nanotopography-Induced Changes in Focal Adhesions, Cytoskeletal Organization, and Mechanical Properties of Human Mesenchymal Stem Cells
,”
Biomaterials
,
31
(
6
), pp.
1299
1306
.
7.
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
, 2003, “
Mechanics of the Human Red Blood Cell Deformed by Optical Tweezers
,”
J. Mech. Phys. Solids
,
51
(
11–12
), pp.
2259
2280
.
8.
Suresh
,
S.
,
Spatz
,
J.
,
Mills
,
J. P.
,
Micoulet
,
A.
,
Dao
,
M.
,
Lim
,
C. T.
,
Beil
,
M.
, and
Seufferlein
,
T.
, 2005, “
Single-Cell Nanomechanics and Human Disease States
,”
Acta Biomaterialia
,
1
, pp.
15
30
.
9.
Suresh
,
S.
, 2007, “
Biomechanics and Biophysics of Cancer Cells
,”
Acta Mater.
,
55
(
12
), pp.
3989
4014
.
10.
Diez-Silva
,
M.
,
Dao
,
M.
,
Han
,
J. Y.
,
Lim
,
C. T.
, and
Suresh
,
S.
, 2010, “
Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease
,”
MRS Bull.
,
35
(
5
), pp.
382
388
.
11.
Li
,
Q. S.
,
Lee
,
G. Y. H.
,
Ong
,
C. N.
, and
Lim
,
C. T.
, 2008, “
AFM Indentation Study of Breast Cancer Cells
,”
Biochem. Biophys. Res. Commun.
,
374
(
4
), pp.
609
613
.
12.
Lulevich
,
V.
,
Yang
,
H. Y.
,
Isseroff
,
R. R.
, and
Liu
,
G. Y.
, 2010, “
Single Cell Mechanics of Keratinocyte Cells
,”
Ultramicroscopy
,
110
(
12
), pp.
1435
1442
.
13.
Sniadecki
,
N.
,
Desai
,
R. A.
,
Ruiz
,
S. A.
, and
Chen
,
C. S.
, 2006, “
Nanotechnology for Cell-Substrate Interactions
,”
Ann. Biomed. Eng.
,
34
(
1
), pp.
59
74
.
14.
Sagvolden
,
G.
,
Giaever
,
I.
,
Pettersen
,
E. O.
, and
Feder
,
J.
, 1999, “
Cell Adhesion Force Microscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
,
96
(
2
), pp.
471
476
.
15.
Koay
,
E. J.
,
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
, 2003, “
Creep Indentation of Single Cells
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
334
341
.
16.
Verma
,
D.
,
Katti
,
K. S.
, and
Katti
,
D. R.
, 2008, “
Effect of Biopolymers on Structure of Hydroxyapatite and Interfacial Interactions in Biomimetically Synthesized Hydroxyapatite/Biopolymer Nanocomposites
,”
Ann. Biomed. Eng.
,
36
(
6
), pp.
1024
1032
.
17.
Verma
,
D.
,
Katti
,
K. S.
,
Katti
,
D. R.
, and
Mohanty
,
B.
, 2008, “
Mechanical Response and Multilevel Structure of Biomimetic Hydroxyapatite/Polygalacturonic/Chitosan Nanocomposites
,”
Mater. Sci. Eng., C
,
28
(
3
), pp.
399
405
.
18.
Xue
,
W. C.
,
Bandyopadhyay
,
A.
, and
Bose
,
S.
, 2009, “
Polycaprolactone Coated Porous Tricalcium Phosphate Scaffolds for Controlled Release of Protein for Tissue Engineering
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
91B
(
2
), pp.
831
838
.
19.
Ambre
,
A. H.
, 2010, “
Nanoclay Based Composite Scaffolds For Bone Tissue Engineering Applications
,” ASME J. Nanotechnol. Eng. Med., p. 031013.
20.
Yim
,
E. K. F.
,
Reano
,
R. M.
,
Pang
,
S. W.
,
Yee
,
A. F.
,
Chen
,
C. S.
, and
Leong
,
K. W.
, 2005, “
Nanopattern-Induced Changes in Morphology and Motility of Smooth Muscle Cells
,”
Biomaterials
,
26
(
26
), pp.
5405
5413
.
21.
Discher
,
D. E.
,
Janmey
,
P.
, and
Wang
,
Y. L.
, 2005, “
Tissue Cells Feel and Respond to the Stiffness of Their Substrate
,”
Science
,
310
(
5751
), pp.
1139
1143
.
22.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
, 2006, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.
23.
Chen
,
C. S.
,
Tan
,
J.
, and
Tien
,
J.
, 2004, “
Mechanotransduction at Cell-Matrix and Cell-Cell Contacts
,”
Annu. Rev. Biomed. Eng.
,
6
, pp.
275
302
.
24.
Guilak
,
F.
,
Cohen
,
D. M.
,
Estes
,
B. T.
,
Gimble
,
J. M.
,
Liedtke
,
W.
, and
Chen
,
C. S.
, 2009, “
Control of Stem Cell Fate by Physical Interactions With the Extracellular Matrix
,”
Cell Stem Cell
,
5
(
1
), pp.
17
26
.
25.
Geiger
,
B.
,
Spatz
,
J. P.
, and
Bershadsky
,
A. D.
, 2009, “
Environmental Sensing Through Focal Adhesions
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
1
), pp.
21
33
.
26.
Darling
,
E. M.
,
Topel
,
M.
,
Zauscher
,
S.
,
Vail
,
T. P.
, and
Guilak
,
F.
, 2008, “
Viscoelastic Properties of Human Mesenchymally-Derived Stem Cells and Primary Osteoblasts, Chondrocytes, and Adipocytes
,”
J. Biomech.
,
41
(
2
), pp.
454
464
.
27.
Domke
,
J.
,
Dannohl
,
S.
,
Parak
,
W. J.
,
Muller
,
O.
,
Aicher
,
W. K.
, and
Radmacher
,
M.
, 2000, “
Substrate Dependent Differences in Morphology and Elasticity of Living Osteoblasts Investigated by Atomic Force Microscopy
,”
Colloids Surf., B
,
19
(
4
), pp.
367
379
.
28.
Takai
,
E.
,
Costa
,
K. D.
,
Shaheen
,
A.
,
Hung
,
C. T.
, and
Guo
,
X. E.
, 2005, “
Osteoblast Elastic Modulus Measured by Atomic Force Microscopy is Substrate Dependent
,”
Ann. Biomed. Eng.
,
33
(
7
), pp.
963
971
.
29.
Ng
,
L.
,
Hung
,
H. H.
,
Sprunt
,
A.
,
Chubinskaya
,
S.
,
Ortiz
,
C.
, and
Grodzinsky
,
A.
, 2007, “
Nanomechanical Properties of Individual Chondrocytes and Their Developing Growth Factor-Stimulated Pericellular Matrix
,”
J. Biomech.
,
40
(
5
), pp.
1011
1023
.
30.
Cross
,
S. E.
,
Jin
,
Y. S.
,
Rao
,
J.
, and
Gimzewski
,
J. K.
, 2007, “
Nanomechanical Analysis of Cells From Cancer Patients
,”
Nat. Nanotechnol.
,
2
(
12
), pp.
780
783
.
31.
Cross
,
S. E.
,
Jin
,
Y. S.
,
Tondre
,
J.
,
Wong
,
R.
,
Rao
,
J.
, and
Gimzewski
,
J. K.
, 2008, “
AFM-Based Analysis of Human Metastatic Cancer Cells
,”
Nanotechnology
,
19
(
38
), p.
384003
.
32.
Sikdar
,
D.
,
Katti
,
D.
,
Katti
,
K.
, Mohanty, and Bedabibhas, 2009, “
Influence of Backbone Chain Length and Functional Groups of Organic Modifiers on Crystallinity and Nanomechanical Properties of Intercalated Clay-Polycaprolactam Nanocomposites
,”
Int. J. Nanotechnol.
,
6
(
5/6
), pp.
468
492
.
33.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
34.
Rho
,
J. Y.
,
Roy
,
M. E.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
, 1999, “
Elastic Properties of Microstructural Components of Human Bone Tissue as Measured by Nanoindentation
,”
J. Biomed. Mater. Res.
,
45
(
1
), pp.
48
54
.
35.
Basu
,
S.
, and
Barsoum
,
M. W.
, 2007, “
Deformation Micromechanisms of ZnO Single Crystals as Determined From Spherical Nanoindentation Stress-Strain Curves
,”
J. Mater. Res.
,
22
(
9
), pp.
2470
2477
.
36.
Sikdar
,
D.
,
Katti
,
D.
,
Katti
,
K.
, and
Mohanty
,
B.
, 2007, “
Effect of Organic Modifiers on Dynamic and Static Nanomechanical Properties and Crystallinity of Intercalated Clay–Polycaprolactam Nanocomposites
,”
J. Appl. Polym. Sci.
,
105
, pp.
790
802
.
37.
Ebenstein
,
D. M.
,
Kuo
,
A.
,
Rodrigo
,
J. J.
,
Reddi
,
A. H.
,
Ries
,
M.
, and
Pruitt
,
L.
, 2004, “
A Nanoindentation Technique for Functional Evaluation of Cartilage Repair Tissue
,”
J. Mater. Res.
,
19
(
1
), pp.
273
281
.
38.
Ebenstein
,
D. M.
, and
Pruitt
,
L. A.
, 2004, “
Nanoindentation of Soft Hydrated Materials for Application to Vascular Tissues
,”
J. Biomed. Mater. Res. Part A
,
69A
(
2
), pp.
222
232
.
39.
Roy
,
M. E.
,
Rho
,
J. Y.
,
Tsui
,
T. Y.
,
Evans
,
N. D.
, and
Pharr
,
G. M.
, 1999, “
Mechanical and Morphological Variation of the Human Lumbar Vertebral Cortical and Trabecular Bone
,”
J. Biomed. Mater. Res.
,
44
(
2
), pp.
191
197
.
40.
Habelitz
,
S.
,
Marshall
,
G. W.
,
Balooch
,
M.
, and
Marshall
,
S. J.
, 2002, “
Nanoindentation and Storage of Teeth
,”
J. Biomech.
,
35
(
7
), pp.
995
998
.
41.
Balooch
,
M.
,
Habelitz
,
S.
,
Kinney
,
J. H.
,
Marshall
,
S. J.
, and
Marshall
,
G. W.
, 2008, “
Mechanical Properties of Mineralized Collagen Fibrils as Influenced by Demineralization
,”
J. Struct. Biol.
,
162
(
3
), pp.
404
410
.
42.
Isaksson
,
H.
,
Nagao
,
S.
,
Malkiewicz
,
M.
,
Julkunen
,
P.
,
Nowak
,
R.
, and
Jurvelin
,
J. S.
, 2010, “
Precision of Nanoindentation Protocols for Measurement of Viscoelasticity in Cortical and Trabecular Bone
,”
J. Biomech.
,
43
(
12
), pp.
2410
2417
.
43.
Katti
,
K. S.
,
Mohanty
,
B.
, and
Katti
,
D. R.
, 2006, “
Nanomechanical Properties of Nacre
,”
J. Mater. Res.
,
21
(
5
), pp.
1237
1242
.
44.
Mohanty
,
B.
,
Katti
,
K. S.
,
Katti
,
D. R.
, and
Verma
,
D.
, 2006, “
Dynamic Nanomechanical Response of Nacre
,”
J. Mater. Res.
,
21
(
8
), pp.
2045
2051
.
45.
Mohanty
,
B.
,
Katti
,
K. S.
, and
Katti
,
D. R.
, “
Experimental Investigation of Nanomechanics of the Mineral-Protein Interface in Nacre
,”
Mech. Res. Commun.
,
35
(
1–2
), pp.
17
23
.
46.
Baclayon
,
M.
,
Wuite
,
G. J. L.
, and
Roos
,
W. H.
, 2010, “
Imaging and Manipulation of Single Viruses by Atomic Force Microscopy
,”
Soft Mater.
,
6
(
21
), pp.
5273
5285
.
47.
Katti
,
K. S.
, and
Katti
,
D. R.
, 2006, “
Why is Nacre So Tough and Strong?
,”
Mater. Sci. Eng., C
,
26
(
8
), pp.
1317
1324
.
48.
Kaufman
,
J. D.
,
Song
,
J.
, and
Klapperich
,
C. M.
, 2007, “
Nanomechanical Analysis of Bone Tissue Engineering Scaffolds
,”
J. Biomed. Mater. Res. Part A
,
81A
(
3
), pp.
611
623
.
49.
Kaufman
,
J. D.
,
Miller
,
G. J.
,
Morgan
,
E. F.
, and
Klapperich
,
C. M.
, 2008, “
Time-Dependent Mechanical Characterization of Poly(2-Hydroxyethyl Methacrylate) Hydrogels Using Nanoindentation and Unconfined Compression
,”
J. Mater. Res.
,
23
(
5
), pp.
1472
1481
.
50.
Khanna
,
R.
,
Katti
,
K. S.
, and
Katti
,
D. R.
, 2010, “
In Situ Swelling Behavior of Chitosan-Polygalacturonic Acid/Hydroxyapatite Nanocomposites in Cell Culture Media
,”
Int. J. Polym. Sci.
,
2010
, p.
12
.
51.
Arfsten
,
J.
,
Bradtmoller
,
C.
,
Kampen
,
I.
, and
Kwade
,
A.
, 2008, “
Compressive Testing of Single Yeast Cells in Liquid Environment Using a Nanoindentation System
,”
J. Mater. Res.
,
23
(
12
), pp.
3153
3160
.
52.
Franke
,
O.
,
Goken
,
M.
, and
Hodge
,
A. M.
, 2008, “
The Nanoindentation of Soft Tissue: Current and Developing Approaches
,”
JOM
,
60
(
6
), pp.
49
53
.
53.
Allison
,
D. P.
,
Mortensen
,
N. P.
,
Sullivan
,
C. J.
, and
Doktycz
,
M. J.
, 2010, “
Atomic Force Microscopy of Biological Samples
,”
Rev. Nanomed. Nanobiotechnol.
,
2
(
6
), pp.
618
634
.
54.
Li
,
H. B.
, and
Cao
,
Y.
, 2010, “
Protein Mechanics: From Single Molecules to Functional Biomaterials
,”
Acc. Chem. Res.
,
43
(
10
), pp.
1331
1341
.
55.
Garcia-Manyes
,
S.
,
Redondo-Morata
,
L.
,
Oncins
,
G.
, and
Sanz
,
F.
, 2010, “
Nanomechanics of Lipid Bilayers: Heads or Tails?
,”
J. Am. Chem. Soc.
,
132
(
37
), pp.
12874
12886
.
56.
Wang
,
J. S.
, and
Pelling
,
A. E.
, 2010, “
Cell Sheet Integrity and Nanomechanical Breakdown During Programmed Cell Death
,”
Med. Biol. Eng. Comput.
,
48
(
10
), pp.
1015
1022
.
57.
Tetard
,
L.
,
Passian
,
A.
,
Farahi
,
R. H.
, and
Thundat
,
T.
, 2010, “
Atomic Force Microscopy of Silica Nanoparticles and Carbon Nanohorns in Macrophages and Red Blood Cells
,”
Ultramicroscopy
,
110
(
6
), pp.
586
591
.
58.
Dubey
,
D. K.
, and
Tomar
,
V.
, 2009, “
Role of Hydroxyapatite Crystal Shape in Nanoscale Mechanical Behavior of Model Tropocollagen-Hydroxyapatite Hard Biomaterials
,”
Mater. Sci. Eng., C
,
29
(
7
), pp.
2133
2140
.
59.
Katti
,
D. R.
,
Pradhan
,
S. M.
, and
Katti
,
K. S.
, 2010, “
Directional Dependence of Hydroxyapatite-Collagen Interactions on Mechanics of Collagen
,”
J. Biomech.
,
43
(
9
), pp.
1723
1730
.
60.
Bhowmik
,
R.
,
Katti
,
K. S.
, and
Katti
,
D. R.
, 2009, “
Mechanisms of Load-Deformation Behavior of Molecular Collagen in Hydroxyapatite-Tropocollagen Molecular System: Steered Molecular Dynamics Study
,”
J. Eng. Mech.
,
135
(
5
), pp.
413
421
.
61.
Bhowmik
,
R.
,
Katti
,
K. S.
, and
Katti
,
D. R.
, 2007, “
Mechanics of Molecular Collagen is Influenced by Hydroxyapatite in Natural Bone
,”
J. Mater. Sci.
,
42
(
21
), pp.
8795
8803
.
62.
Dubey
,
D. K.
, and
Tomar
,
V.
, 2010, “
Effect of Changes in Tropocollagen Residue Sequence and Hydroxyapatite Mineral Texture on the Strength of Ideal Nanoscale Tropocollagen-Hydroxyapatite Biomaterials
,”
J. Mater. Sci.: Mater. Med.
,
21
(
1
), pp.
161
171
.
63.
Tang
,
Y.
,
Ballarini
,
R.
,
Buehler
,
M. J.
, and
Eppell
,
S. J.
, 2010, “
Deformation Micromechanisms of Collagen Fibrils Under Uniaxial Tension
,”
J. Royal Soc., Interface
,
7
(
46
), pp.
839
850
.
64.
Buehler
,
M. J.
, 2006, “
Atomistic and Continuum Modeling of Mechanical Properties of Collagen: Elasticity, Fracture, and Self-Assembly
,”
J. Mater. Res.
,
21
(
8
), pp.
1947
1961
.
65.
Hengsberger
,
S.
,
Kulik
,
A.
, and
Zysset
,
P.
, 2002, “
Nanoindentation Discriminates the Elastic Properties of Individual Human Bone Lamellae Under Dry and Physiological Conditions
,”
Bone
,
30
(
1
), pp.
178
184
.
66.
Rho
,
J. Y.
, and
Pharr
,
G. M.
, 1999, “
Effects of Drying on the Mechanical Properties of Bovine Femur Measured by Nanoindentation
,”
J. Mater. Sci.: Mater. Med.
,
10
(
8
), pp.
485
488
.
67.
Bembey
,
A. K.
,
Oyen
,
M. L.
,
Bushby
,
A. J.
, and
Boyde
,
A.
, 2006, “
Viscoelastic Properties of Bone as a Function of Hydration State Determined by Nanoindentation
,”
Philos. Mag.
,
86
(
33–35
), pp.
5691
5703
.
68.
Carrillo
,
F.
,
Gupta
,
S.
,
Balooch
,
M.
,
Marshall
,
S. J.
,
Marshall
,
G. W.
,
Pruitt
,
L.
, and
Puttlitz
,
C. M.
, 2005, “
Nanoindentation of Polydimethylsiloxane Elastomers: Effect of Crosslinking, Work of Adhesion, and Fluid Environment on Elastic Modulus
,”
J. Mater. Res.
,
20
(
10
), pp.
2820
2830
.
69.
Gupta
,
S.
,
Carrillo
,
F.
,
Li
,
C.
,
Pruitt
,
L.
, and
Puttlitz
,
C.
, 2007, “
Adhesive Forces Significantly Affect Elastic Modulus Determination of Soft Polymeric Materials in Nanoindentation
,”
Mater. Lett.
,
61
(
2
), pp.
448
451
.
70.
Cao
,
Y. F.
,
Yang
,
D. H.
, and
Soboyejoy
,
W.
, 2005, “
Nanoindentation Method for Determining the Initial Contact andAdhesion Characteristics of Soft Polydimethylsiloxane
,”
J. Mater. Res.
,
20
(
8
), pp.
2004
2011
.
71.
Fischer-Cripps
,
A. C.
, 2006, “
Review of Analysis and Interpretation of Nanoindentation Test Data
,”
Surf. Coat. Technol.
,
200
(
14–15
), pp.
4153
4165
.
72.
Ebenstein
,
D. M.
, and
Pruitt
,
L. A.
, 2006, “
Nanoindentation of Biological Materials
,”
Nanotoday
,
1
(
3
), pp.
26
33
.
73.
Carrillo
,
F.
,
Gupta
,
S.
,
Balooch
,
M.
,
Marshall
,
S. J.
,
Marshall
,
G. W.
,
Pruitt
,
L.
, and
Puttlitz
,
C. M.
, 2005, “
Nanoindentation of Polydimethylsiloxane Elastomers: Effect of Crosslinking, Work of Adhesion, and Fluid Environment on Elastic Modulus
,”
J. Mater. Res.
,
20
, pp.
2820
2830
.
74.
Balooch
,
G.
,
Marshall
,
G. W.
,
Marshall
,
S. J.
,
Warren
,
O. L.
,
Asif
,
S. A. S.
, and
Balooch
,
M.
, 2004, “
Evaluation of a New Modulus Mapping Technique to Investigate Microstructural Features of Human Teeth
,”
J. Biomech.
,
37
(
8
), pp.
1223
1232
.
75.
Khanna
,
R.
,
Katti
,
K. S.
, and
Katti
,
D. R.
, 2009, “
Nanomechanics of Surface Modified Nanohydroxyapatite Particulates Used in Biomaterials
,”
J. Eng. Mech.
,
135
(
5
), pp.
468
478
.
76.
Mashmoushy
,
H.
,
Zhang
,
Z.
, and
Thomas
,
C. R.
, 1998, “
Micromanipulation Measurement of the Mechanical Properties of Baker’s Yeast Cells
,”
Biotechnol. Tech.
,
12
(
12
), pp.
925
929
.
77.
Fischer-Cripps
,
A. C.
, 2002,
Nanoindentation
,
Springer
,
New York
.
78.
Guilak
,
F.
,
Tedrow
,
J. R.
, and
Burgkart
,
R.
, 2000, “
Viscoelastic Properties of the Cell Nucleus
,”
Biochem. Biophys. Res. Commun.
,
269
(
3
), pp.
781
786
.
79.
Pritchard
,
S.
, and
Guilak
,
F.
, 2004, “
The Role of F-Actin in Hypo-Osmotically Induced Cell Volume Change and Calcium Signaling in Anulus Fibrosus Cells
,”
Ann Biomed. Eng.
,
32
(
1
), pp.
103
111
.
You do not currently have access to this content.