The present investigation deals with magnetic drug targeting in a microvessel of radius 5 μm using two-phase fluid model. The microvessel is divided into the endothelial glycocalyx layer wherein the blood obeys Newtonian character and a core region wherein the blood obeys the non-Newtonian Casson fluid character. The carrier particles, bound with nanoparticles and drug molecules, are injected into the vascular system upstream from the malignant tissue and are captured at the tumor site using a local applied magnetic field near the tumor position. Brinkman model is used to characterize the permeable nature of the inner wall of the microvessel. The expressions for the fluidic force for the carrier particle traversing in the two-phase fluid in the microvessel and the magnetic force due to the external magnetic field are obtained. Several factors that influence the magnetic targeting of the carrier particles in the microvasculature, such as the size and shape of the carrier particle, the volume fraction of embedded magnetic nanoparticles, and the distance of separation of the magnet from the axis of the microvessel, are considered in the present problem. The system of coupled equations is solved to obtain the trajectories of the carrier particle in the noninvasive case.

References

References
1.
Decuzzi
,
P.
, and
Ferrari
,
M.
, 2006, “
The Adhesive Strength of Non-Spherical Particles Mediated by Specific Interactions
,”
Biomaterials
,
27
(
30
), pp.
5307
5314
.
2.
Decuzzi
,
P.
, and
Ferrari
,
M.
, 2008, “
The Receptor-Mediated Endocytosis of Non-Spherical Particles
,”
Biophys. J.
,
94
, pp.
3790
3797
.
3.
Geng
,
T.
,
Dalhaimer
,
P.
,
Cai
,
S.
,
Isai
,
R.
,
Tewari
,
M.
,
Minki
,
T.
, and
Discher
,
D. E.
, 2007, “
Shape Effects of Filaments Versus Spherical Particles in Flow and Drug Delivery
,”
Nat. Nanotechnol.
,
2
, pp.
249
255
.
4.
Muro
,
S.
,
Garnacho
,
C.
,
Champion
,
J. A.
,
Leferovich
,
J.
,
Gajewski
,
C.
,
Schuchman
,
E. H.
,
Mitragotri
,
S.
, and
Muzykantov
,
V. R.
, 2008, “
Control of Endothelial Targeting and Intracellular Delivery of Therapeutic Enzymes by Modulating the Size and Shape of ICAM-1-Targeted Carriers
,”
Mol. Ther.
,
16
(
8
), pp.
1450
1458
.
5.
Hsieh
,
D. S. T.
,
Rhine
,
W. D.
, and
Langer
,
R.
, 1983, “
Zero-Order Controlled-Release Polymer Matrices for Microbubbles and Micromolecules
,”
J. Pharm. Sci.
,
72
(
1
), pp.
17
22
.
6.
Dunne
,
M.
,
Corrigan
,
O. I.
, and
Ramtoola
,
Z.
, 2000, “
Influence of Particle Size and Dissolution Conditions on the Degradation Properties of Polylactide-co-glycolide Particles
,”
Biomaterials
,
21
(
16
), pp.
1659
1668
.
7.
Panyam
,
J.
,
Dali
,
M. A.
,
Sahoo
,
S. K.
,
Ma
,
W. X.
,
Chakravarthi
,
S. S.
,
Amidon
,
G. L.
,
Levy
,
R. J.
, and
Labhasetwar
,
V.
, 2003, “
Polymer Degration and In Vitro Release of a Model Protein From Poly(D, L-lactide-co-glycolide) Nano- and Microparticles
,”
J. Controlled Release
,
92
(
1–2
), pp.
173
187
.
8.
Champion
,
J. A.
, and
Mitragotri
,
S.
, 2006, “
Role of Target Geometry in Phagocytosis
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
13
), pp.
4930
4934
.
9.
Gratton
,
S. E.
,
Ropp
,
P. A.
,
Pohlhaus
,
P. D.
,
Luft
,
J. C.
,
Madden
,
V. J.
,
Napier
,
M. E.
, and
Desimore
,
J. M.
, 2008, “
The Effect of Particle Design on Cellular Internalization Pathways
,”
Proc. Natl. Acad. Sci. U.S.A.
,
105
, pp.
11613
11618
.
10.
Goode
,
B. L.
,
Drubin
,
D. G.
, and
Barnes
,
G.
, 2000, “
Functional Cooperation Between the Microtubule and Actin Cytoskeletons
,”
Curr. Opin. Cell Biol.
,
12
(
1
), pp.
63
71
.
11.
Furlani
,
E. P.
, and
Ng
,
K. C.
, 2006, “
Analytic Model of Magnetic Nanoparticle Transport and Capture in the Microvasculature
,”
Phys. Rev. E.
,
73
,
061919
.
12.
Furlani
,
E. J.
, and
Furlani
,
E. P.
, 2007, “
A Model for Predicting Magnetic Targeting of Multifunctional Particles in the Microvasculature
,”
J. Magn. Magn. Mater.
,
312
, pp.
187
193
.
13.
Shaw
,
S.
,
Murthy
,
P. V. S. N.
, and
Pradhan
,
S. C.
, 2010, “
Effect of Non-Newtonian Characteristics of Blood on Magnetic Drug Targeting in the Impermeable Microvessel
,”
J. Magn. Magn. Mater.
,
322
(
8
), pp.
1037
1043
.
14.
Shaw
,
S.
, and
Murthy
,
P. V. S. N.
, 2010, “
Magnetic Targeting in the Permeable Blood Vessel: The Effect of Blood Rheology
,”
ASME J. Nanotechnol. Eng. Med.
,
1
(
2
).
15.
Wang
,
W.
, 2007, “
Change in Properties of the Glycocalyx Affects the Shear Rate and Stress Distribution on Endothelial Cells
,”
ASME J. Biomech. Eng.
,
129
, pp.
323
329
.
16.
Potter
,
D. R.
, and
Damiano
,
E. R.
, 2008, “
The Hydrodynamically Relevant Endothelial Cell Glycocalyx Observed In Vivo is Absent In Vitro
,”
Circ. Res.
,
102
, pp.
770
776
.
17.
Liu
,
M.
, and
Yang
,
J.
, 2009, “
Electrokinetic Effect of the Endothelial Glycocalyx Layer on Two-Phase Blood Flow in Small Blood Vessel
,”
Microvasc. Res.
,
78
(
1
), pp.
14
19
.
18.
Weinbaum
,
S.
,
Tarbell
,
J. M.
, and
Damiano
,
E. R.
, 2007, “
The Structure and Function of the Endothelial Glycocalyx Layer
,”
Annu. Rev. Biomed. Eng.
,
9
, pp.
121
167
.
19.
Pries
,
A. R.
,
Secomb
,
T. W.
, and
Gaehtgens
,
P.
, 2000, “
The Endothelial Surface Layer
,”
Eur. J. Physiol.
,
440
, pp.
653
666
.
20.
Damiano
.
E. R.
,
Duling
,
B. R.
,
Ley
,
K.
, and
Skalak
,
T. C.
, 1996, “
Axisymmetric Pressure-Driven Flow of Rigid Pellets Through a Cylindrical Tube Lined With a Deformable Porous Wall Layer
,”
J. Fluid Mech.
,
314
, pp.
163
189
.
21.
Shaw
,
S.
, and
Murthy
,
P. V. S. N.
, 2010, “
Magnetic Targeting in the Impermeable Micro-Vessel With Two Phase Fluid Model—Non-Newtonian Characteristics of Blood
,”
Microvasc. Res.
,
80
(
2
), pp.
209
220
.
22.
Sugihara-Seki
,
M.
, and
Fu
,
B. M.
, 2005, “
Blood Flow and Permeability in Microvessels
,”
Fluid Dyn. Res.
,
37
, pp.
82
132
.
You do not currently have access to this content.