The main objective of this paper is to develop a model of quantum dot (QD) devices for incident γ radiation detection. A novel methodology is introduced to characterize the effect of γ radiation on QD detectors. In this methodology, we used VisSim environment along with the block diagram programming procedures. The benefit of using this modeling language is the simplicity of carrying out the performance’s measurement through computer simulation instead of setting up a practical procedure, which is expensive as well as difficult in management. The roles that the parameters of fabrication can play in the characteristics of QDs devices are discussed through developed models implemented by VisSim environment. The rate equations of the QD devices under γ radiation are studied. The effect of incident γ radiation on the optical gain, power, and output photon densities is investigated. The implemented models can help designers and scientists to optimize their devices to meet their requirements.

References

References
1.
Withers
,
N. J.
,
Sankar
,
K.
,
Akins
,
B. A.
,
Memon
,
T. A.
,
Gu
,
T.
,
Gu
,
J.
,
Smolyakov
,
G. A.
,
Greenberg
,
M. R.
,
Boyle
,
T. J.
, and
Osiński
,
M.
, 2008, “
Rapid Degradation of CdSe/ZnS Colloidal Quantum Dots Exposed to Gamma Irradiation
,”
Appl. Phys. Lett.
,
93
, p.
173101
.
2.
Letant
,
S. E.
, and
Wang
,
T.-F.
, 2006, “
Study of Porous Glass Doped With Quantum Dots or Laser Dyes Under Alpha Irradiation
,”
Appl. Phys. Lett.
,
88
(
10
), p.
103110
.
3.
Campbell
,
I. H.
, and
Crone
,
B. K.
, 2006, “
Quantum-Dot/Organic Semiconductor Composites for Radiation Detection
,”
Adv. Mater.
,
18
(
1
), pp.
77
79
.
4.
Letant
,
S. E.
, and
Wang
,
T.-F.
, 2006, “
Semiconductor Quantum Dot Scintillation Under γ-Ray Irradiation
,”
Nano Lett.
,
6
(
12
), pp.
2877
2880
.
5.
Burgess
,
D. S.
, 2006, “
Quantum Dots May Enable New Radiation Detectors
,”
Appl. Phys. Lett.
,
88
(
10
), p.
103110
.
6.
Bagga
,
A.
,
Chattopadhyay
,
P. K.
, and
Ghosh
,
S.
, 2006, “
Origin of Stokes Shift in InAs and CdSe Quantum Dots: Exchange Splitting of Excitonic States
,”
Phys. Rev. B
,
74
, p.
035341
.
7.
Saengkerdsub
,
S.
,
Im
,
H.-J.
,
Stephan
,
A. C.
,
Mahurin
,
S. M.
, and
Dai
,
S.
, 2002, “
Nanocrystal-Based Scintillators for Radiation Detection
,”
AIP Conf. Proc.
,
632
, pp.
220
224
.
8.
Nahri
,
D. G.
, and
Naeimi
,
A. N.
, 2010, “
Simulation of Static Characteristics of Self-Assembled QD Lasers
,”
World Appl. Sci. J.
,
11
(
1
), pp.
12
17
.
9.
Solomon
,
G. S.
,
Xie
,
Z.
, and
Agrawal
,
M.
, 2005, “
Simulation of a Quantum Dot Microcavity Terahertz Laser
,”
Proc. SPIE
,
5790
, pp.
94
103
.
10.
The
,
G. A. P.
, 2009, “
How to Simulate a Semiconductor Quantum Dot Laser: General Description
,”
Revista Brasileira de Ensino de Fisica
,
31
(
2
), p.
2302
.
11.
Gioannini
,
M.
,
Thé
,
G. A. P.
, and
Montrosse
,
I.
, 2008, “
Multi-Population Rate Equation Simulation of Quantum Dot Lasers with Feedback
,”
NUSOD
,
Nottingham
,
UK
.
12.
Mahmoud
,
I. I.
, and
Kamel
,
S. A.
, 1998, “
Using a Simulation Technique for Switched-Mode High-Voltage Power Supplies Performance Study
,”
IEEE Trans. IAS
,
34
(
5
), pp.
954
952
.
13.
Mahmoud
,
I. I.
,
El_Tokhy
,
M. S.
, and
El Mashade
,
M. B.
, 2010, “
Block Diagram Modeling of Quantum Laser Sources
,”
J. Opt. Laser Technol.
,
42
(
3
), pp.
509
521
.
You do not currently have access to this content.