In the present work, we report the novel natural transdermal otoliths/collagen/bacterial cellulose patch for osteoporosis treatment. This biomaterial is an osteoinductor, or be, stimulates the bone regeneration, enabling bigger migration of the cells for formation of the bone fabric. Otolith is a typical biomaterial that is composed of calcium carbonate and organic matrix. Otoliths are calcareous concrescences present in the inner ear of fishes. Since they are rich in minerals, they are considered essential to the bone mineralization process on a protein matrix (otolin). The objective in this study was to analyze the regeneration capacity of bone defects treated with otoliths network preparation. Collagen and nano-otoliths influences in bacterial cellulose was analyzed using transmission infrared spectroscopy (FTIR). In vivo analysis shows bone surface tissue with high regularity, higher osteoblast activity, and osteo-reabsorption activities areas. These results indicated that the transdermal permeation of otollith using this patch system was sufficient for the treatment of bone diseases. These findings indicate that our novel transdermal delivery system for otolith/collagen/bacterial cellulose is a promising approach to improve compliance and quality of life of patients in the treatment of bone diseases.

References

1.
Taton
,
T. A.
, 2001, “
Boning up on Biology
,”
Nature (London)
,
412
, pp.
491
492
.
2.
Kim
,
B. S.
,
Baez
,
C. E.
, and
Atala
,
A.
, 2000, “
Biomaterials for Tissue Engineering
,”
World J. Urol
,
18
, pp.
2
9
.
3.
Basmaji
,
P.
,
Filho
,
L. X.
, and
Rodrigues
,
S. A.
, 2008, Brazilian Patent No. PI0604760-2.
4.
Tuzlakoglu
,
K.
,
Bolgen
,
N.
,
Salgado
,
A. J.
,
Gomes
,
M. E.
,
Piskin
,
E.
, and
Reis
,
R. L.
, 2005, “
Nano- and Micro-Fiber Combined Scaffolds: A New Architecture for Bone Tissue Engineering
,”
J. Mater. Sci.: Mater. Med.
,
16
, pp.
1099
1104
.
5.
Czaja
,
W.
,
Krystynowicz
,
A.
,
Bielecki
,
S.
, and
Brown
, Jr.,
R.
, 2006, “
Microbial Cellulose—The Natural Power to Heal Wounds
,”
Biomaterials
,
27
, pp.
145
151
.
6.
Serrador
,
J. M.
,
Lewis
,
A. L.
,
Gopalakrishnan
,
G. S.
,
Black
,
F.
, and
Wood
,
S. J.
, 2009, “
Loss of Otolith Function With Age is Associated With Increased Postural Sway Measures
,”
Neurosci. Lett.
,
465
, pp.
10
15
.
7.
Wang
,
L. J.
, 1999, “
Ocular Counterrolling as an Indicator of Vestibular Otolith Function
,”
Space Med. Med. Eng.
,
12
, pp.
231
234
.
8.
Furman
,
J. M.
, and
Redfern
,
M. S.
, 2001, “
Effect of Aging on the Otolith-Ocular Reflex
,”
J. Vestib. Res.
,
11
, pp.
91
103
.
9.
Olyveira
,
G. M.
,
Valido
,
D. P.
,
Costa
,
L. M. M.
,
Gois
,
P. B. P.
,
Filho
,
L. X.
, and
Basmaji
,
P.
, 2011, “
First Otoliths/Collagen/Bacterial Cellulose Nanocomposites as a Potential Scaffold for Bone Regeneration
,”
J. Biomater. Nanobiotechnol.
2
,
239
.
10.
Chen
,
G. P.
,
Ushida
,
T.
, and
Tateishi
,
T.
, 2000, “
Hybrid Biomaterials for Tissue Engineering: A Preparative Method for PLA or PLGA-Collagen Hybrid Sponges
,”
Adv. Mater.
,
12
, pp.
455
467
.
11.
Geiger
,
M.
,
Li
,
R. H.
, and
Friess
,
W.
, 2003, “
Collagen Sponges for Bone Regeneration with rhBMP-2
,”
Adv. Drug Delivery Rev.
,
55
, pp.
1613
1629
.
12.
Meinel
,
L.
,
Karageorgiou
,
V.
,
Fajardo
,
R.
,
Snyder
,
B.
,
Shinde-Patil
,
V.
,
Zichner
,
L.
,
Kaplan
,
D.
,
Langer
,
R.
, and
Vunjak-Novakovic
,
G.
, 2004, “
Bone Tissue Engineering Using Human Mesenchymal Stem Cells: Effects of Scaffold Material and Medium Flow
,”
Ann. Biomed. Eng.
,
32
, pp.
112
122
.
13.
Klemm
,
D.
,
Heublein
,
B.
,
Fink
,
H. P.
, and
Bohn
,
A.
, 2005, “
Cellulose: Fascinating Biopolymer and Sustainable Raw Material
,”
Angew. Chem., Int. Ed.
,
44
, pp.
3358
3393
.
14.
Valido
,
P. D.
,
Bastos
,
T. S.
,
Albuquerque-Júnior
,
R. L. C.
,
Ribeiro
,
M. A. G.
,
Barreto
,
A. L. S.
,
Xavier-Filho
,
L.
,
Rodrigues
,
S. A.
, and
de Brito
,
A. M. G.
, 2010, “
Preliminary Study of Using Otoliths of Cynoscion Acoupa Upon the Process of Bone Regeneration in Rats
,”
J. Bras. Patol. Med. Lab.
,
46
, pp.
315
322
.
15.
Korkusuz
,
F.
,
Korkusuz
,
P.
, and
Hasirci
,
V.
, 2004, “
In Vivo Tissue Engineering of Bone Using Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) and Collagen Scaffolds
,”
Tissue Eng.
,
10
, pp.
1234
1250
.
16.
Li
,
D.
, and
Xia
,
Y. N.
, 2004, “
Electrospinning Nanibers: Reinventing Wheel?
,”
Adv. Mater.
,
16
, pp.
1151
1170
.
17.
Li
,
Z.
, and
Zhang
,
M.
, 2005, “
Chitosan–Alginate as Scaffolding Material for Cartilage Tissue Engineering
,”
J. Biomed. Mater. Res. A.
,
75
, pp.
485
493
.
18.
Xiao
,
Y.
,
Qian
,
H.
,
Young
,
W. G.
, and
Bartold
,
P. M.
, 2003, “
Tissue Engineering for Bone Regeneration Using Differentiated Alveolar Bone Cells in Collagen Scaffolds
,”
Tissue Eng.
,
9
, pp.
1167
1177
.
19.
Seol
,
Y. J.
,
Lee
,
J. Y.
,
Park
,
Y. J.
,
Lee
,
Y.-M.
,
Ku
,
Y.
,
Rhyu
,
I.-N.
,
Lee
,
S.-J.
,
Han
,
S.-B.
, and
Chung
,
C.-P.
, 2004, “
Chitosan Sponges as Tissue Engineering Scaffolds for Bone Formation
,”
Biotechnol. Lett.
,
26
, pp.
1037
1041
.
20.
Kacurakova
,
M.
,
Smith
,
A. C.
,
Gidley
,
M. J.
, and
Wilson
,
R. H.
, 2002, “
Molecular Interactions in Bacterial Cellulose Composites Studied by 1D FT-IR and Dynamic 2D FT-IR Spectroscopy
,”
Carbohydr. Res.
,
337
, pp.
1145
1153
.
21.
Surma-Ślusarska
,
B.
,
Presler
,
S.
, and
Danielewicz
,
D.
, 2008, “
Characteristics of Bacterial Cellulose Obtained From Acetobacter Xylinum Culture for Application in Papermaking
,”
Fibres Text. East Eur.
,
16
, pp.
108
111
.
22.
Nakamoto
,
K.
, 1963,
Infrared Spectra Inorganic and Coordination Compounds
,
John Wiley & Sons
,
New York
, pp.
1
328
.
You do not currently have access to this content.