Abstract

Recently, considerable attention has been given to investigating the surface effects on nanoscale materials. These effects can be predominant for small-scale structures, such as nanobeams, nanoplates, and nanoshells. In this paper, surface elasticity effects are considered for small scale beam structures based on the Laplace–Young equation, which results in an equivalent distributed loading term in the beam equation. We show that these effects are explained by their nonconservative nature that can be essentially modeled as a follower tensile loading for inextensible beams. The buckling and vibrations of small scale beams in the presence of surface elasticity effects is studied for various boundary conditions. It is shown that the surface elasticity effects may significantly affect the buckling and vibrations behavior of small scale beams. For clamped-free boundary conditions, we show that the buckling load is reduced compared to the one without this surface effect. This result is consistent with some recent numerical results based on surface Cauchy–Born model and with experimental results available in the literature. It appears that this result cannot be obtained if surface elasticity effects are modeled as a conservative-type loading. For other boundary conditions such as hinge–hinge and clamped–clamped boundary conditions, the results are identical to the ones already published. We explain in this paper the surprising results observed in the literature that surface elasticity effects may soften a nanostructure for some specific boundary conditions (due to the nonconservative nature of its loading application). The same conclusions are obtained for the vibrations of small scale beams with surface elasticity effects, where the natural frequency tends to decrease with surface elasticity effects for clamped-free conditions.

References

1.
Young
,
T.
, 1805, “
An Essay on the Cohesion of Fluids
,”
Philos Trans. R. Soc. London
,
95
, pp.
65
87
.
2.
Laplace
,
P. S.
, 1805,
Traité de mécanique céleste
(
Gauthier-Villars
,
Paris
, 1805), Vol.
4
, Suppléments du Livre X.
3.
Gurtin
,
M. E.
,
Markenscoff
,
X.
, and
Thurston
,
R. N.
, 1976, “
Effect of Surface Stress on the Natural Frequency of Thin Crystals
,”
Appl. Phys. Lett.
,
29
, pp.
529
530
.
4.
He
,
J.
, and
Lilley
,
C. M.
, 2008, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires
,”
Nano Lett.
,
8
, pp.
1798
1802
.
5.
He
,
J.
, and
Lilley
,
C. M.
, 2008, “
Surface Stress Effect on Bending Resonance of Nanowires With Different Boundary Conditions
,”
Appl. Phys. Lett.
,
93
,
263108
.
6.
Wang
,
G. F.
, and
Feng
,
X. Q.
, 2007, “
Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Microbeams
,”
Appl. Phys. Lett.
,
90
,
231904
.
7.
Wang
,
G. F.
, and
Feng
,
X. Q.
, 2009, “
Surface Effects on Buckling of Nanowires Under Uniaxial Compression
,”
Appl. Phys. Lett.
,
94
,
141913
.
8.
Wang
,
G. F.
, and
Feng
,
X. Q.
, 2009, “
Timoshenko Beam Model for Buckling and Vibration of Nanowires With Surface Effects
,”
J. Phys. D: Appl. Phys.
,
42
,
155411
.
9.
Liu
,
C.
,
Rajapakse
,
R. K. N. D.
, and
Phani
,
A. S.
, 2011, “
Finite Element Modelling of Beams With Surface Energy Effects
,”
ASME J. Appl. Mech.
,
78
,
031014
,
see also Erratum
, 2012,
ASME J.Appl. Mech.
,
79
,
017001
.
10.
Song
,
F.
,
Huang
,
G. L.
,
Park
,
H. S.
, and
Liu
,
X. N.
, 2011, “
A Continuum Model for the Mechanical Behavior of Nanowires Including Surface and Surface-Induced Initial Stresses
,”
Int. J. Solids Struct.
,
48
, pp.
2154
2163
.
11.
Chen
,
T.
,
Chiu
,
M. S.
, and
Weng
,
C. N.
, 2006, “
Derivation of the Generalized Young–Laplace Equation of Curved Interfaces in Nanoscaled Solids
,”
J. Appl. Phys.
,
100
,
074308
.
12.
Petrova
,
H.
,
Perez-Juste
,
J.
,
Zhang
,
Z. Y.
,
Zhang
,
J.
,
Kosel
,
T.
, and
Hartland
,
G. V.
, 2006, “
Crystal Structure Dependence of the Elastic Constants of Gold Nanorods
,”
J. Mater. Chem.
,
16
, pp.
3957
3963
.
13.
Park
,
H. S.
, and
Klein
,
P. A.
, 2008, “
Surface Stress Effects on the Resonant Properties of Metal Nanowires: The Importance of Finite Deformation Kinematics and the Impact of the Residual Surface Stress
,”
J. Mech. Phys. Solids
,
56
, pp.
3144
3166
.
14.
Lagowski
,
J.
,
Gatos
,
H. C.
, and
Sproles
,
E. S. J.
, 1975, “
Surface Stress and Normal Mode of Vibration of Thin Crystal: GaAs
,”
Appl. Phys. Lett.
,
26
, pp.
493
495
.
15.
Beck
,
M.
, 1952, “
Die Knicklast des einseitig eingespannten tangential gedrückten Stabes
,”
Z. Angew. Math. Phys.
,
3
, pp.
225
228
.
16.
Elishakoff
,
I.
, 2005, “
Controversy Associated With the So-Called “Follower Forces”: Critical Overview
,”
Appl. Mech. Rev.
,
58
, pp.
117
142
.
17.
Koiter
,
W. T.
, 1996, “
Unrealistic Follower Forces
,”
J. Sound Vib.
,
194
, pp.
636
638
.
18.
Sugiyama
Y.
,
Langthjem
M. A.
, and
Ryu
B. J.
, 1999, “
Realistic Follower Forces
,”
J. Sound Vib.
,
225
, pp.
779
782
.
19.
Leipholz
,
H.
, 1970,
Stability Theory
,
Academic Press
,
London.
20.
Challamel
N.
,
Andrade
A.
,
Camotim
D.
, and
Milisavlevich
B. M.
, 2010, “
On the Flexural-Torsional Buckling of Cantilever Strip Beam-Columns With Linearly Varying Depth
,”
J. Eng. Mech.
,
136
, pp.
787
800
.
21.
Pradhan
,
S. C.
, and
Phadikar
,
J. K.
, 2009, “
Bending, Buckling and Vibration Analyses of Nonhomogeneous Nanotubes Using GDQ and Nonlocal Elasticity Theory
,”
Struct. Eng. Mech.
,
33
, pp.
193
213
.
22.
Pradhan
,
S. C.
, and
Sarkar
,
A.
, 2009, “
Analyses of Tapered fgm Beams With Nonlocal Theory
,”
Struct. Eng. Mech.
,
32
, pp.
811
833
.
23.
Bokaian
,
A.
, 1990, “
Natural Frequencies of Beams Under Tensile Axial Loads
,”
J. Sound Vib.
,
142
, pp.
481
498
.
24.
Karnovsky
,
I. A.
, and
Lebed
,
O. I.
, 2001,
Formulas for Structural Dynamics: Tables, Graphs and Solutions
,
McGraw-Hill
,
New-York
.
25.
Weaver
,
W.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
, 1990,
Vibration Problems in Engineering
,
Wiley
,
New-York
.
26.
Blevins
,
R. D.
, 2001,
Formulas for Natural Frequency and Mode Shape
,
Krieger Publishing Company
.
27.
Tarnai
,
T.
, 1995, “
The Southwell and the Dunkerley theorems
,”
Summation Theorems in Structural Stability
,
T.
Tarnai
, ed., CISM Courses and Lectures No. 354,
Springer-Verlag
,
New York
, pp.
141
185
.
28.
Massonnet
,
C.
, 1940, “
Les relations entre les modes normaux de vibration et la stabilité des systèmes élastiques
,” Bulletin du CERES Liège, pp.
183
210
(see also Massonnet, C., 1965, Résistance des matériaux, Dunod, Paris).
29.
Galef
,
A. E.
, 1968, “
Bending Frequencies of Compressed Beams
,”
J. Acoust. Soc. Am.
,
44
, p.
643
.
30.
Cuenot
,
S.
,
Frétigny
,
C.
,
Demoustier-Champagne
,
S.
, and
Nysten
,
B.
, 2004, “
Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy
,”
Phys. Rev. B
,
69
,
165410
.
31.
Ru
,
C. Q.
, 2010, “
Simple Geometrical Explanation of Gurtin-Murdoch Model of Surface Elasticity With Clarification of Its Related Versions
,”
Sci. China, Ser. G
,
53
, pp.
536
544
.
32.
Ansari
,
R.
, and
Sahmani
R.
, 2011, “
Bending Behaviour and Buckling of Nanobeams Including Surface Stress Effects Corresponding to Different Beam Theories
,”
Int. J. Eng. Sci.
49
, pp.
1244
1255
.
33.
Wang
,
J.
,
Huang
,
Z.
,
Duan
,
H.
,
Yu
,
S.
,
Feng
,
X.
,
Wang
,
G.
,
Zhang
,
W.
, and
Wang
,
T.
, 2011, “
Surface Stress Effect in Mechanics of Nanostructured Materials
,”
Acta Mech. Solida Sinica
,
24
, pp.
52
82
.
34.
Liu
,
C.
, 2010, “
Surface Elasticity Models for Static and Dynamic Response of Nanoscale Beams
,”
Master of Applied Sciences, The University of British Colombia
,
Vancouver
.
35.
Sudak
,
L. J.
, 2003, “
Column Buckling of Multiwalled Carbon Nanotubes Using Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
,
94
, pp.
7281
7287
.
36.
Wang
,
C. M.
,
Zhang
,
Y. Y.
,
Ramesh
,
S. S.
, and
Kitipornchai
,
S.
, 2006, “
Buckling Analysis of Micro- and Nano-Rods/Tubes Based on Nonlocal Timoshenko Beam Theory
,”
J. Phys. D: Appl. Phys.
,
39
, pp.
3904
3909
.
37.
Reddy
,
J. N.
, 2007, “
Nonlocal Theories for Bending, Buckling and Vibration of Beams
,”
Int. J. Eng. Sci.
,
45
, pp.
288
307
.
38.
Challamel
,
N.
, and
Wang
,
C. M.
, 2008, “
The Small Length Scale Effect for a Non-Local Cantilever Beam: A Paradox Solved
,”
Nanotechnology
,
19
,
345703
.
39.
Zhang
,
Y. Y.
,
Wang
,
C. M.
, and
Challamel
,
N.
, 2010, “
Bending, Buckling and Vibration of Hybrid Nonlocal Beams
,”
J. Eng. Mech.
,
136
, pp.
562
574
.
40.
Challamel
,
N.
, and
Wang
,
C. M.
, 2010, “
On Lateral-Torsional Buckling of Non-Local Beams
,”
Adv. Appl. Math. Mech.
,
3
, pp.
389
398
.
You do not currently have access to this content.