In this paper, we investigate a novel method using bacterial cellulose (BC) as template by in situ method to prepare BC/silver nanocomposites. We first introduce sonication procedure during immersion and reduction reaction process to make sure that the silver nanoparticles can be formed and distributed homogeneously throughout the whole bacterial cellulose network. The BC/silver nanocomposites were confirmed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). To examine the effect of varying solution concentrations on silver nanoparticles formation, the concentration of AgNO3 solution was increased from 0.01 M to 0.05 M and Ag+-ions were reduced by the same concentration of NaBH4. The effects of time and frequency of sonication on BC/silver nanocomposite preparation were also investigated by varying sonication time from 10 min to 60 min and sonication frequency from 20 kHz to 60 kHz. Compared with an ordinary process, ultrasound seems to be an effective way for ions to penetrate into BC and thus the weight percent of silver nanoparticles can be increased. Combined with TGA result, the weight percent of silver nanoparticles can be improved from 8.9% to 31.7% with simple sonication procedure performed by the same preparation condition. However, the average size of silver nanoparticles is around 15 nm, which is bigger than ordinary process. This may be due to the aggregation of small nanoparticles, especially at high AgNO3 concentration.

References

1.
Klemm
,
D.
,
Schumann
,
D.
,
Udhardt
,
U.
, and
Marsch
,
S.
, 2001, “
Bacterial Synthesized Cellulose-Artificial Blood Vessels for Microsurgery
,”
Prog.  Polym. Sci.
,
26
(
9
), pp.
1561
1603
.
2.
Eichhorn
,
S. J.
,
Baillie
,
C. A.
,
Zafeiropoulos
,
N.
,
Mwaikambo
,
L. Y.
,
Ansell
,
M. P.
,
Dufresne
,
A.
,
Entwistle
,
K. M.
,
Herrera-Franco
,
P. J.
,
Escamilla
,
G. C.
,
Groom
,
L.
,
Hughes
,
M.
,
Hill
,
C.
,
Rials
,
T. G.
, and
Wild
,
P. M.
, 2001, “
Review Current International Research into Cellulosic Fibres and Composites
,”
J. Mater. Sci.
,
36
(
9
), pp.
2107
2131
.
3.
Alvarez
,
O. M.
,
Patel
,
M.
,
Booker
,
J.
, and
Markowitz
,
L.
, 2004, “
Effectiveness of Biocellulose Wound Dressing for the Treatment of Chronic Venous Leg Ulcers: Results of a Single Center Randomized Study Involving 24
,”
Wound
,
16
, pp.
224
233
.
4.
Czaja
,
W.
,
Krystynowicz
,
A.
,
Bielecki
,
S.
, and
Brown
,
R. M.
, 2006, “
Microbial Cellulose—The Natural Power to Heal Wounds
,”
Biomaterials
,
27
(
2
), pp.
145
151
.
5.
Klemm
,
D.
,
Udhardt
,
U.
,
Marsch
,
S.
, and
Schumann
,
D. I.
, 1999, “
BASYC- Bacterial Synthesized Cellulose: Miniaturized Tubes for Microsurgery
,”
Polym. News
,
24
(
11
), pp.
377
379
.
6.
Backdahl
,
H.
,
Helenius
,
G.
,
Bodin
,
A.
,
Nannmark
,
U.
,
Johansson
,
B. R.
,
Risberg
,
B.
, and
Gatenholm
,
P.
, 2006, “
Mechanical Properties of Bacterial Cellulose and Interactions With Smooth Muscle Cells
,”
Biomaterials
,
27
(
9
), pp.
2141
2149
.
7.
Helenius
,
G.
,
Backdahl
,
H.
,
Bodin
,
A.
,
Nannmark
,
U.
,
Gatenholm
,
P.
, and
Risberg
,
B.
, 2006, “
In Vivo Biocompatibility of Bacterial Cellulose
,”
J. Biomed. Mater. Res. Part. A.
,
76
(
2
), pp.
431
438
.
8.
Hong
,
L.
,
Wang
,
Y. L.
,
Jia
,
S. R.
,
Huang
,
Y.
,
Gao
,
C.
, and
Wan
,
Y. Z.
, 2006, “
Hydroxyapatite/Bacterial Cellulose Composites Synthesized Via a Biomimetic Route
,”
Mater. Lett.
,
60
(
13–14
), pp.
1710
1713
.
9.
Millon
,
L. E.
,
Mohammadi
,
H.
, and
Wan
,
W. K.
, 2006, “
Anisotropic Polyvinyl Alcohol Hydrogel for Cardiovascular Applications
,”
J. Biomed. Mater. Res. Part. B: Appl. Biomater.
,
79
(
2
), pp.
305
311
.
10.
Wan
,
Y. Z.
,
Hong
,
L.
,
Jia
,
S. R.
,
Huang
,
Y.
,
Zhu
,
Y.
,
Wang
,
Y. L.
, and
Jiang
,
H. J.
, 2006, “
Synthesis and Characterization of Hydroxyapatite—Bacterial Cellulose Nanocomposites
,”
Compos. Sci. Technol.
,
66
, pp.
1825
1832
.
11.
Yasuda
,
K.
,
Ping
,
G. J.
,
Katsuyama
,
Y.
,
Nakayama
,
A.
,
Tanabe
,
Y.
, and
Kondo
,
E.
, 2005, “
Biomechanical Properties of High-Toughness Double Network Hydrogels
,”
Biomaterials
,
26
, pp.
4468
4475
.
12.
Nakayama
,
A.
,
Kakugo
,
A.
,
Ping
,
G. J.
,
Osada
,
Y.
,
Takai
,
M.
, and
Erata
,
T.
, 2004, “
Double-Network Hydrogel With a High Mechanical Strength Using Bacterial Cellulose
,”
Adv. Funct. Mater.
,
14
, pp.
1124
1128
.
13.
Hutchens
,
S. A.
,
Benson
,
R. S.
,
Evans
,
B. R.
,
O’Neill
,
H. M.
, and
Rawn
,
C. J.
, 2006, “
Biomimetic Synthesis of Calcium-Deficient Hydroxyapatite in a Natural Hydrogel
,”
Biomaterials
,
27
, pp.
4661
4670
.
14.
Charpentier
,
P. A.
,
Maguire
,
A.
, and
Wan
,
W. K.
, 2006, “
Surface Modification of Polyester to Produce a Bacterial Cellulose-Based Vascular Prosthetic Device
,”
Appl. Surf. Sci.
,
252
, pp.
6360
6367
.
15.
Maneerung
,
T.
,
Tokura
,
S.
, and
Rujiravant
,
R.
, 2008, “
Impregnation of Silver Nanoparticles Into Bacterial Cellulose for Antimicrobial Wound Dressing
,”
Carbohydr. Polym.
,
72
, pp.
43
51
.
16.
Barud
,
H. S.
,
Barrios
,
C.
,
Regiani
,
T.
,
Marques
,
R. F. C.
,
Verelst
,
M.
,
Dexpert-Ghys
,
J.
,
Messaddeq
,
Y.
, and
Ribeiro
,
S. J. L.
, 2008, “
Self-supported Silver Nanoparticles Containing Bacterial Cellulose Membranes
,”
Mater. Sci. Eng., C.
,
28
, pp.
515
518
.
17.
de Santa Maria
,
L. C.
,
Santos
,
A. L. C.
,
Olivira
,
P. C.
,
Barud
,
H. S.
,
Messaddeq
,
Y.
, and
Ribeiro
,
S. J. L.
, 2009, “
Synthesis and Characterization of Silver Nanoparticles Impregnated Into Bacterial Cellulose
,”
Mater. Lett.
,
63
, pp.
797
799
.
18.
Dong
,
A.
,
Wang
,
Y.
,
Tang
,
Y.
,
Ren
,
N.
,
Zhang
,
Y.
,
Yue
,
Y.
, and
Gao
,
Z.
, 2002, “
Zeolitic Tissue Through Wood Cell Templating
,”
Adv. Mater.
,
14
, pp.
926
929
.
19.
Ifuku
,
S.
,
Tsuji
,
M.
,
Morimoto
,
M.
,
Saimoto
,
H.
, and
Yano
,
H.
, 2009, “
Synthesis of Silver Nanoparticles Templated by TEMPO-Mediated Oxidized Bacterial Cellulose Nanofibers
,”
Biomacromolecules
,
10
, pp.
2714
2717
.
You do not currently have access to this content.