Prospect of applications of graphene sheets in composites and other advanced materials have drawn attention from a broad spectrum of research fields. This paper deals with the methods to find mechanical properties of such nanoscale structures. First, the lattice structure method with the Poisson’s ratio of 0.16 and the thickness of 3.4 Å is used to obtain the Young’s moduli for the in-plane and out-of-plane deformation states. This method has the accuracy of molecular dynamics simulations and efficiency of the finite element method. The graphene sheet is modeled as a plane grid of carbon atoms taken as the nodal points, each of which carries the mass of the carbon atom and is assigned as a six degrees of freedom. The covalent bond between two adjacent carbon atoms is treated as an extremely stiff frame element with all three axial, bending, and torsional stiffness components. Subsequently, the computed Young’s moduli, approximately 0.11 TPa for bending and 1.04 TPa for the in-plane condition, are used for studying the vibrational behaviors of graphene sheets by the continuum plate theory. The natural frequencies and corresponding mode shapes of various shaped single layer graphene sheet ), such as rectangular, skewed, and circular, are computed by the two methods which are found to yield very close results. Results of the well-established continuum plate theory are very consistent with the lattice structure method, which is based on accurate interatomic forces.

References

References
1.
Novoselov
,
K. S.
,
Jiang
,
D.
,
Schedin
,
F.
,
Booth
,
T. J.
,
Khotkevich
,
V. V.
,
Morozov
,
S. V.
, and
Geim
,
A. K.
, 2005, “
Two-Dimensional Atomic Crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
102
(
30
), pp.
10451
10453
.
2.
Geim
,
A. K.
, and
Novoselov
,
K. S.
, 2007, “
The Rise of Graphene
,”
Nature Mater.
,
6
, pp.
183
191
.
3.
Wu
,
Y. H.
,
Yu
,
T.
, and
Shen
,
Z. X.
, 2010, “
Two-Dimensional Carbon Nanostructures: Fundamental Properties, Synthesis, Characterization, and Potential Applications
,”
J. Appl. Phys.
,
108
(
7
),
071301
.
4.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Dommett
,
G. H. B.
,
Kohlhaas
,
K. M.
,
Zimmey
,
E. J.
,
Stach
,
E. A.
,
Pine
,
R. D.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
, 2006, “
Graphene-Based Composite Materials
,”
Nature (London)
,
442
, pp.
282
286
.
5.
Singh
,
A. V.
, and
Arghavan
,
S.
, 2010, “
Vibrations of Carbon Nanoscale Structures: A Critical Review
,”
Comput. Technol. Rev.
,
1
, pp.
281
314
.
6.
Van Lier
,
G.
,
Van Alsenoy
,
C.
,
Van Doren
,
V.
, and
Geerlings
,
P.
, 2000, “
Ab Initio Study of the Elastic Properties of Single-Walled Carbon Nanotubes and Graphene
,”
Chem. Phys. Lett.
,
326
(
1–2
), pp.
181
185
.
7.
Scarpa
,
F.
,
Adhikari
,
S.
, and
a Phani
,
A.
, 2009, “
Effective Elastic Mechanical Properties of Single Layer Graphene Sheets
,”
Nanotechnology
,
20
(
6
),
065709
.
8.
Jiang
,
J. W.
,
Wang
,
J. S.
, and
Li
,
B.
, 2009, “
Young’s Modulus of Graphene: A Molecular Dynamics Study
,”
Phys. Rev. B
,
80
(
11
),
113405
.
9.
Karnet
,
Y. N.
,
Nikitin
,
S. M.
,
Nikitina
,
E. A.
, and
Yanovskii
,
Y. G.
, 2010, “
Computer Simulation of Mechanical Properties of Carbon Nanostructures
,”
Mech. Solids.
,
45
(
4
), pp.
595
609
.
10.
Georgantzinos
,
S. K.
,
Giannopoulos
,
G. I.
, and
Anifantis
,
N. K.
, 2010, “
Numerical Investigation of Elastic Mechanical Properties of Graphene Structures
,”
Mater. Des.
,
31
(
10
), pp.
4646
4654
.
11.
Neek-Amal
,
M.
, and
Peeters
,
F. M.
, 2010, “
Linear Reduction of Stiffness and Vibration Frequencies in Defected Circular Monolayer Graphene
,”
Phys. Rev. B
,
81
(
23
),
235437
.
12.
Sadeghi
,
M.
, and
Naghdabadi
,
R.
, 2010, “
Nonlinear Vibrational Analysis of Single-Layer Graphene Sheets
,”
Nanotechnology
,
21
(
10
),
105705
.
13.
Hemmasizadeh
,
A.
,
Mahzoon
,
M.
,
Hadi
,
E.
, and
Khandan
,
R.
, 2008, “
An Innovative Method for Developing the Equivalent Continuum Model of a Single Layer Graphene Sheet
,”
Thin Solid Films
,
516
(
21
), pp.
7636
7640
.
14.
He
,
X. Q.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 2005, “
Resonance Analysis of Multi-Layered Graphene Sheets Used as Nanoscale Resonators
,”
Nanotechnology
,
16
(
10
), pp.
2086
2091
.
15.
Liew
,
K. M.
,
He
,
X. Q.
, and
Kitipornchai
,
S.
, 2006, “
Predicting Nanovibration of Multi-Layered Graphene Sheets Embedded in an Elastic Matrix
,”
Acta Mater.
,
54
(
16
), pp.
4229
4236
.
16.
Wang
,
L.
, and
He
,
X.
, 2010, “
Vibration of a Multilayered Graphene Sheet With Initial Stress
,”
J. Nanotechnol. Eng. Med.
,
1
(
4
),
041004
.
17.
Behfar
,
K.
,
Vafai
,
A.
,
Naghdabadi
,
R.
, and
Estekanchi
,
H. E.
, 2004, “
Nanoscale Vibrational Analysis of an Embedded Multi-Layered Graphene Sheet
,”
Proceedings of ASME 7th Biennial Conference on Engineering Systems Design and Analysis
,
Manchester
,
England
,
3
, pp.
569
572
.
18.
Behfar
,
K.
, and
Naghdabadi
,
R.
, 2005, “
Nanoscale Vibrational Analysis of a Multi-Layered Graphene Sheet Embedded in an Elastic Medium
,”
Compos. Sci. Technol.
,
65
(
7–8
), pp.
1159
1164
.
19.
Gupta
,
S. S.
, and
Batra
,
R. C.
, 2010, “
Elastic Properties and Frequencies of Free Vibrations of Single-Layer Graphene Sheets
,”
J. Comput. Theor. Nanosci.
,
7
(
10
), pp.
2151
2164
.
20.
Ranjbartoreh
,
A. R.
,
Wang
,
B.
,
Shen
,
X.
, and
Wang
,
G.
, 2011, “
Advanced Mechanical Properties of Graphene Paper
,”
J. Appl. Phys.
,
109
(
1
),
014306
.
21.
Pradhan
,
S. C.
, and
Phadikar
,
J. K.
, 2009, “
Nonlocal Elasticity Theory for Vibration of Nanoplates
,”
J. Sound. Vib.
,
325
(
1–2
), pp.
206
223
.
22.
Murmu
,
T.
, and
Pradhan
,
S. C.
, 2009, “
Vibration Analysis of Nano-Single-Layered Graphene Sheets Embedded in Elastic Medium Based on Nonlocal Elasticity Theory
,”
J. Appl. Phys.
,
105
(
6
),
064319
.
23.
Murmu
,
T.
, and
Pradhan
,
S. C.
, 2009, “
Vibration Analysis of Nanoplates Under Uniaxial Prestressed Conditions Via Nonlocal Elasticity
,”
J. Appl. Phys.
,
106
(
10
),
104301
.
24.
Murmu
,
T.
, and
Pradhan
,
S. C.
, 2009, “
Small-Scale Effect on the Free In-Plane Vibration of Nanoplates by Nonlocal Continuum Model
,”
J. Phys. E
,
41
(
8
), pp.
1628
1633
.
25.
Arash
,
B.
, and
Wang
,
Q.
, 2011, “
Vibration of Single- and Double-Layered Graphene Sheets
,”
J. Nanotechnol. Eng. Med.
,
2
(
1
),
011012
.
26.
Ansari
,
R.
,
Rajabiehfard
,
R.
, and
Arash
,
B.
, 2010, “
Nonlocal Finite Element Model for Vibrations of Embedded Multi-Layered Graphene Sheets
,”
Comput. Mater. Sci.
,
49
(
4
), pp.
831
838
.
27.
Jomehzadeh
,
E.
, and
Saidi
,
A. R.
, 2011, “
A Study on Large Amplitude Vibration of Multilayered Graphene Sheets
,”
Comput. Mater. Sci.
,
50
(
3
), pp.
1043
1051
.
28.
Cornell
,
W. D.
,
Cieplak
,
P.
,
Bayly
,
C. I.
,
Gould
,
I. R.
,
Merz
Jr.,
K. M.
,
Ferguson
,
D. M.
,
Spellmeyer
,
D. C.
,
Fox
,
T.
,
Caldwell
,
J. W.
, and
Kollman
,
P. A.
, 1995, “
A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules
,”
J. Am. Chem. Soc.
,
117
(
19
), pp.
5179
5197
.
29.
Li
,
C.
, and
Chou
,
T. W.
, 2003, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids. Struct.
,
40
(
10
), pp.
2487
2499
.
30.
Li
,
C.
, and
Chou
,
T. W.
, 2003, “
Single-Walled Carbon Nanotubes as Ultrahigh Frequency Nanomechanical Resonators
,”
Phys. Rev. B
,
68
(
7
),
073405
.
31.
Sakhaee-Pour
,
A.
,
Ahmadian
,
M. T.
, and
Naghdabadi
,
R.
, 2008, “
Vibrational Analysis of Single Layered Graphene Sheets
,”
Nanotechnology
,
19
(
8
),
085702
.
32.
Arghavan
,
S.
, and
Singh
,
A. V.
, 2011, “
On the Vibrations of Single-Walled Carbon Nanotubes
,”
J. Sound. Vib.
,
330
(
13
), pp.
3102
-
3122
.
33.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
, 1959, 
Theory Plates Shells
,
2nd ed.
,
McGraw-Hill
,
New York
.
34.
Blevins
,
R. D.
, 1979, 
Formulas for Natural Frequency Mode Shape
,
Van Nostrand Reinhold
,
New York
.
You do not currently have access to this content.