The potential of double-walled carbon nanotubes (DWCNTs) as a micromass sensor is explored. A nonlocal Timoshenko beam carrying a micromass at the free end of the inner tube is used to analyze the vibration of DWCNT-based mass sensor. The length of the outer tube is not equal to that of the inner tube, and the interaction between two tubes is governed by van der Waals force (vdW). Using the transfer function method, the natural frequencies of a nonlocal cantilever with a tip mass are computed. The effects of the attached mass and the outer-to-inner tube length ratio on the natural frequencies are discussed. When the nonlocal parameter is neglected, the frequencies reduce to the classical results, in agreement with those using the finite element method. The obtained results show that increasing the attached micromass decreases the natural frequency but increases frequency shift. The mass sensitivity improves for short DWCNTs used in mass sensor. The nonlocal Timoshenko beam model is more adequate than the nonlocal Euler-Bernoulli beam model for short DWCNT sensors. Obtained results are helpful to the design of DWCNT-based resonator as micromass sensor.

References

References
1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Ccarbon
,”
Nature (London)
,
354
, pp.
56
58
.
2.
Dai
,
H. J.
,
Hafner
,
J. H.
,
Rinzler
,
A. G.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
, 1996, “
Nanotubes as Nanoprobes in Scanning Probe Microscopy
,”
Nature (London)
,
384
, pp.
147
150
.
3.
Kim
,
P.
, and
Lieber
,
C. M.
, 1999, “
Nanotube Nanotweezers
,”
Science
,
286
, pp.
2148
2150
.
4.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
, 1997, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
,
277
, pp.
1971
1975
.
5.
Jensen
,
K.
,
Kim
,
K.
, and
Zettl
,
A.
, 2008, “
An Atomic-Resolution Nanomechanical Mass Sensor
,”
Nat. Nanotechnol.
,
3
, pp.
533
537
.
6.
Poncharal
,
P.
,
Wang
,
Z. L.
,
Ugarte
,
D.
, and
Heer
,
W. A. D.
, 1999, “
Electrostatic Deflections and Electro-Mechanical Resonances of Carbon Nanotubes
,”
Science
,
283
, pp.
1513
1516
.
7.
Li
,
C. Y.
, and
Chou
,
T. W.
, 2004, “
Mass Detection Using Carbon Nanotube-Based Nanomechanical Resonators
,”
Appl. Phys. Lett.
84
, pp.
5246
5248
.
8.
Joshi
,
A. Y.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
, 2010, “
Dynamic Analysis of a Clamped Wavy Single Walled Carbon Nanotube Based Nanomechanical Sensors
,”
J. Nanotechnol. Eng. Med.
,
1
, p.
031007
.
9.
Mehdipour
,
I.
,
Barari
,
A.
, and
Domairry
,
G.
, 2011, “
Application of a Cantilevered SWCNT With Mass at the Tip as a Nanomechanical Sensor
,”
Comput. Mater. Sci.
,
50
, pp.
1830
1833
.
10.
Wu
,
D. H.
,
Chien
,
W. T.
,
Chen
,
C. S.
, and
Chen
,
H. H.
, 2006, “
Resonant Frequency Analysis of Fixed-Free Single-Walled Carbon Nanotube-Based Mass Sensor
,”
Sens. Actuators, A
,
126
, pp.
117
121
.
11.
Joshi
,
A. Y.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
, 2011, “
Zeptogram Scale Mass Sensing Using Single Walled Carbon Nanotube Based Biosensors
,”
Sens. Actuators, A
,
168
, pp.
275
280
.
12.
Mateiu
,
R.
,
Davis
,
Z. J.
,
Madsen
,
D. N.
,
Mølhave
,
K.
,
Bøggild
,
P.
,
Rassmusen
,
A. M.
,
Brorson
,
M.
,
Jacobsen
,
J. H. C.
, and
Boisen
,
A.
, 2004, “
An Approach to a Multi-Walled Carbon Nanotube Based Mass Sensor
,”
Microelectron. Eng.
,
73
, pp.
670
674
.
13.
Mateiu
,
R.
,
Kühle
,
A.
,
Marie
,
R.
, and
Boisen
,
A.
, 2005, “
Building a Multi-Walled Carbon Nanotube-Based Mass Sensor With the Atomic Force Microscope
,”
Ultramicroscopy
,
105
, pp.
233
237
.
14.
Elishakoff
,
I.
,
Versaci
,
C.
, and
Muscolino
,
G.
, 2011, “
Clamped-Free Double-Walled Carbon Nanotube-Based Mass Sensor
,”
Acta Mech.
,
219
(
5
), pp.
29
43
.
15.
Collins
,
P. G.
,
Hersam
,
M.
,
Arnold
,
M.
,
Martel
,
R.
, and
Avouris
,
P.
, 2001, “
Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
86
, pp.
3128
3131
.
16.
Kang
,
J. W.
,
Kwon
,
O. K.
,
Hwang
,
H. J.
, and
Jiang
,
Q.
, 2011, “
Resonance Frequency Distribution of Cantilevered (5,5)(10,10) Double-Walled Carbon Nanotube With Different Intertube Lengths
,”
Mol. Simul.
,
37
(
1
), pp.
18
22
.
17.
Kang
,
J. W.
,
Kwon
,
O. K.
,
Lee
,
J. H.
,
Choi
,
Y. G.
, and
Hwang
,
H. J.
, 2009, “
Frequency Change by inter-Walled Length Difference of Double-Wall Carbon Nanotube Resonator
,”
Solid State Commun.
,
149
(
1
), pp.
1574
1577
.
18.
Elishakoff
,
I.
, and
Pentaras
,
D.
, 2009, “
Fundamental Natural Frequencies of Double-Walled Carbon Nanotubes
,”
J. Sound Vib.
,
322
, pp.
652
664
.
19.
Elishakoff
,
I.
,
Versaci
,
C.
,
Maugeri
,
N.
, and
Muscolino
,
G.
, 2011, “
Clamped-Free Single-Walled carbon Nanotube-Based Mass Sensor Treated as Bernoulli-Euler Beam
,”
ASME J. Nanotechnol. Eng. Med.
,
2
, p.
021001
.
20.
Timoshenko
,
S.
, 1921, “
On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,”
Philos. Mag.
,
41
, pp.
744
746
.
21.
Li
,
X. F.
, and
Wang
,
B. L.
, 2009, “
Vibrational Modes of Timoshenko Beams at Small Scales
,”
Appl. Phys. Lett.
,
94
, p.
101903
.
22.
Wang
,
C. M.
,
Tan
,
V. B. C.
, and
Zhang
,
Y. Y.
, 2006, “
Timoshenko Beam Model for Vibration Analysis of Multi-Walled Carbon Nanotubes
,”
J Sound Vib.
,
294
, pp.
1060
1072
.
23.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2004, “
Timoshenko-Beam Effects on Transverse Wave Propagation in Carbon Nanotubes
,”
Composites
, Part B,
35
, pp.
87
93
.
24.
Eringen
,
A. C.
, 1983, “
On Differential Equations of Nonlocal Elasticity and Solution of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
.
25.
Eringen
,
A. C.
, 2002,
Nonlocal Continuum Field Theories
,
Springer
,
New York
.
26.
Lee
,
H. L.
,
Hsu
,
J. C.
, and
Chang
,
W. J.
, 2010, “
Frequency Shift of Carbon-Nanotube-Based Mass Sensor Using Nonlocal Elasticity Theory
,”
Nanoscale Res. Lett.
,
5
, pp.
1774
1778
.
27.
Natsuki
,
T.
,
Lei
,
X. W.
,
Ni
,
Q. Q.
, and
Endo
,
M.
, 2010, “
Vibrational Analysis of Double-Walled Carbon Nanotubes With Inner and Outer Nanotubes of Different Lengths
,”
Phys. Lett. A
,
374
, pp.
4684
4689
.
28.
Yang
,
B.
, and
Tan
,
C. A.
, 1992, “
Transfer Function of One-Dimension Distributed Parameter System
,”
ASME J. Appl. Mech.
,
59
(
4
), pp.
1009
1014
.
29.
Duan
,
W. H.
,
Wang
,
C. M.
, and
Zhang
,
Y. Y.
, 2007, “
Calibration of Nonlocal Scaling Effect Parameter for Free Vibration of Carbon Nanotubes by Molecular Dynamics
,”
J. Appl. Phys.
,
101
, p.
024305
.
30.
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Lei
,
Y.
, 2007, “
Modal Analysis of Nonviscously Damped Beams
,”
ASME J. Appl. Mech.
,
74
, pp.
1026
1030
.
31.
Zhou
,
J. P.
, and
Yang
,
B.
, 1995, “
A distributed Transfer Function Method for Analysis of Cylindrical Shells
,”
AIAA J.
,
33
(
9
), pp.
1698
1708
.
32.
Timoshenko
,
S.
, 1974,
Vibration Problems in Engineering
,
Wiley
,
New York
.
33.
Joshi
,
A. Y.
,
Harsha
,
S. P.
, and
Sharma
,
S. C.
, 2010, “
Vibration Signature Analysis of Single Walled Carbon Nanotube Based Nanomechanical Sensors
,”
Physica E
,
42
, pp.
2115
2123
.
34.
Arash
,
B.
,
Wang
,
Q.
, and
Varadan
,
V. K.
, 2011, “
Carbon Nanotube-Based Sensors for Detection of Gas Atoms
,”
ASME J. Nanotechnol. Eng. Med.
,
2
,
021010
.
You do not currently have access to this content.