The viability of neural probes with microelectrodes for neural recording and stimulation in the brain is important for the development of neuroprosthetic devices. Vertically aligned nanowire microelectrode arrays can significantly enhance the capabilities of neuroprosthetic devices. However, when they are implanted into the brain, micromotion and mechanical stress around the neural probe may cause tissue damage and reactive immune response, which may degrade recording signals from neurons. In this research, a finite-element model of the nanowire microelectrode and brain tissue was developed. A rigid body method was provided, and the simulation efficiency was significantly increased. The interface between the microelectrode and brain tissue was modeled by contact elements. Brain micromotion was mimicked by applying a displacement load to the electrode and fixing the boundaries of the brain region. It was observed that the vertically aligned nanostructures on the electrode of the neural probe do increase the cellular sheath area. The strain field distributions under various physical coupling cases at the interface were analyzed along with different loading effects on the neural electrode.

References

1.
Guyton
,
D. L.
, and
Hambrecht
,
F. T.
, 1974, “
Theory and Design of Capacitor Electrodes for Chronic Stimulation
,”
Med. Biol. Eng.
,
12
, pp.
613
619
.
2.
Lebedev
,
M. A.
, and
Nicolelis
,
M. A.
, 2006, “
Brain-Machine Interfaces: Past, Present and Future
,”
Trends Neurosci.
,
29
, pp.
536
546
.
3.
Loudin
,
J. D.
,
Simanovskii
,
D. M.
,
Vijayraghavan
,
K.
,
Sramek
,
C. K.
,
Butterwick
,
A. F.
,
Huie
,
P.
,
Mclean
,
G. Y.
, and
Palanker
,
D. V.
, 2007, “
Optoelectronic Retinal Prosthesis: System Design and Performance
J. Neural Eng.
,
4
, pp.
S72
S84
.
4.
Drake
,
K. L.
,
Wise
,
K. D.
,
Farraye
,
J.
,
Anderson
,
D. J.
, and
BeMent
,
S. L.
, 1988, “
Performance of Planar Multisite Microprobes in Recording Extracellular Single-Unit Intracortical Activity
,”
IEEE Trans. Biomed. Eng.
,
35
, pp.
719
732
.
5.
Campbell
,
P. K.
,
Jones
,
K. E.
,
Huber
,
R. J.
,
Horch
,
K. W.
, and
Normann
,
R. A.
, 1991, “
A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array
,”
IEEE Trans. Biomed. Eng.
,
38
, pp.
758
768
.
6.
Yoon
,
H.
,
Hankins
,
P.
,
Oh.
S.
,
Haubaugh
,
R. E.
, and
Varadan
,
V. K.
, 2010, “
Heterostructured IrO2/Au Nanowire Electrodes and Unit Recordings From Hippocampal Rat Brain
,”
J. Nanotech. Eng. Med.
,
1
, pp.
021006
.
7.
Yoon
,
H.
,
Hankins
,
P.
,
Varadan
,
V. K.
, and
Haubaugh
,
R. E.
, 2008, “
Dual Electrode Ensembles With Core and Shell Nanoelectrodes for Dopamine Sensing Applications
,”
Electroanalysis
,
20
, pp.
1147
1150
.
8.
Turner
,
J. N.
,
Shain
,
W.
,
Szarowski
,
D. H.
,
Andersen
,
M.
,
Martins
,
S.
,
Isaacson
,
M.
, and
Craighead
,
H.
, 1999, “
Cerebral Astrocyte Response to Micromachined Silicon Implants
,”
Exp. Neurol.
,
156
, pp.
33
49
.
9.
Fee
,
M. S.
, 2000, “
Active Stabilization of Electrodes for Intracellular Recording in Awake Behaving Animals
,”
Neuron
,
27
, pp.
461
468
.
10.
Gilletti
,
A.
, and
Muthuswamy
,
J.
, 2006, “
Brain Micromotion Around Implants in the Rodent Somatosensory Cortex
,”
J. Neural Eng.
,
3
, pp.
189
.
11.
Goldstein
,
S. R.
, and
Salcman
,
M.
, 1973, “
Mechanical Factors in the Design of Chronic Recording Intracortical Microelectrodes
,”
IEEE Trans. Biomed. Eng.
,
20
, pp.
260
.
12.
Reichert
,
W. M.
, 2008,
Indwelling Neural Implants: Strategies for Contending With the In Vivo Environment
,
CRC
,
Boca Raton, FL
.
13.
Lee
,
H.
,
Bellamkonda
,
R. V.
,
Sun
,
W.
, and
Levenston
,
M. E.
, 2005, “
Biomechanical Analysis of Silicon Microelectrode-Induced Strain in the Brain
,”
J. Neural Eng.
,
2
, pp.
81
89
.
14.
Subbaroyan
,
J.
,
Martin
,
D. C.
, and
Kipke
,
D. R.
, 2005, “
A Finite-Element Model of the Mechanical Effects of Implantable Microelectrodes in the Cerebral Cortex
,”
J. Neural Eng.
,
2
, pp.
103
113
.
15.
Skringar
,
O.
,
Nabavi
,
A.
, and
Duncan
,
J.
, 2002, “
Model-Driven Brain Shift Compensation
,”
Med. Image Anal.
,
6
, pp.
361
373
.
16.
Kyriacou
,
S. K.
,
Mohamed
,
A.
,
Miller
,
K.
, and
Neff
,
S.
, 2002, “
Brain Mechanics for Neurosurgery: Modeling Issues
,”
Biomech. Model Mechanobiol.
,
1
, pp.
151
164
.
17.
Gilchrist
,
M. D.
, and
O’Donoghue
,
D.
, 2000, “
Simulation of the Development of Frontal Head Impact Injury
,”
Comput. Mech.
,
26
, pp.
229
235
.
18.
Ommaya
,
A. K.
, 1968, “
Mechanical Properties of Tissues of the Nervous System
,”
J. Biomech.
,
1
, pp.
127
138
.
19.
Gefen
,
A.
, and
Margulies
,
S. S.
, 2004, “
Are In Vivo and In Situ Brain Tissues Mechanically Similar?
,”
J. Biomech.
,
37
, pp.
1339
1352
.
20.
Yoon
,
H.
,
Deshpande
,
D. C.
,
Varadan
,
V. K.
,
Kim
,
T.
,
Jeong
,
E.
, and
Harbaugh
,
R. E.
, 2010, “
Development of Titanium Needle Probes for Neural Recording
,”
J. Nanotech. Eng. Med.
,
1
, pp.
011004
.
21.
Yoon
,
H.
,
Deshpande
,
D. C.
,
Ramachandran
,
V.
, and
Varadan
,
V. K.
, 2007, “
Aligned Nanowire Growth Using Lithography-Assisted Bonding of Polycarbonate Template for Neural Probe Electrodes
,”
Nanotechnology
,
19
, pp.
025304
.
You do not currently have access to this content.