There has been considerable progress in cellular and molecular engineering due to recent advances in multiscale technology. Such technologies allow controlled manipulation of physiochemical interactions among cells in tissue culture. In particular, a novel chemomechanical bioreactor has recently been designed for the study of bone and cartilage tissue development, with particular focus on extracellular matrix formation. The bioreactor is equally significant as a tool for validation of mathematical models that explore biokinetic regulatory thresholds (Saha, A. K., and Kohles, S. S., 2010, “A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Nanomechanical Stimulation in a Cartilage Biokinetics Model,” J. Nanotechnol. Eng. Med., 1(3), p. 031005; 2010, “Periodic Nanomechanical Stimulation in a Biokinetics Model Identifying Anabolic and Catabolic Pathways Associated With Cartilage Matrix Homeostasis,” J. Nanotechnol. Eng. Med., 1(4), p. 041001). In the current study, three-dimensional culture protocols are described for maintaining the cellular and biomolecular constituents within defined parameters. Preliminary validation of the bioreactor’s form and function, expected bioassays of the resulting matrix components, and application to biokinetic models are described. This approach provides a framework for future detailed explorations combining multiscale experimental and mathematical analyses, at nanoscale sensitivity, to describe cell and biomolecule dynamics in different environmental regimes.

1.
Chao
,
P. G.
,
Grayson
,
W.
, and
Vunjak-Novakovic
,
G.
, 2007, “
Engineering Cartilage and Bone Using Human Mesenchymal Stem Cells
,”
J. Orthop. Sci.
0949-2658,
12
, pp.
398
404
.
2.
Chung
,
C.
, and
Burdick
,
J. A.
, 2008, “
Engineering Cartilage Tissue
,”
Adv. Drug Delivery Rev.
0169-409X,
60
(
2
), pp.
243
262
.
3.
Yilmaz
,
B. C.
,
Yilmaz
,
G.
,
Yilmaz
,
N. S.
,
Balli
,
E.
, and
Tasdelen
,
B.
, 2010, “
Optimal Transport Time and Conditions for Cartilage Tissue Samples and Expanded Chondrocyte Suspensions
,”
Orthopaedics
,
33
(
1
), p.
25
.
4.
Tortelli
,
F.
, and
Cancedda
,
R.
, 2009, “
Three-Dimensional Cultures of Osteogenic and Chondrogenic Cells: A Tissue Engineering Approach to Mimic Bone and Cartilage In Vitro
,”
Eur. Cell. Mater.
,
17
, pp.
1
4
.
5.
Saha
,
A. K.
, and
Kohles
,
S. S.
, 2010, “
A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Nanomechanical Stimulation in a Cartilage Biokinetics Model
,”
J. Nanotechnol. Eng. Med.
1949-2944,
1
(
3
), p.
031005
.
6.
Saha
,
A. K.
, and
Kohles
,
S. S.
, 2010, “
Periodic Nanomechanical Stimulation in a Biokinetics Model Identifying Anabolic and Catabolic Pathways Associated With Cartilage Matrix Homeostasis
,”
J. Nanotechnol. Eng. Med.
1949-2944,
1
(
4
), p.
041001
.
7.
Saha
,
A. K.
, and
Kohles
,
S. S.
, 2011, “
A Cell-Matrix Model of Anabolic and Catabolic Dynamics During Cartilage Biomolecule Regulation
,”
International Journal of Computers in Healthcare
, in press.
8.
Zuwei
,
M. A.
,
Kotaki
,
M.
,
Inani
,
R.
, and
Ramakrishna
,
A.
, 2005, “
Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds
,”
Tissue Eng.
1076-3279,
11
(
1–2
), pp.
101
109
.
9.
Pazzano
,
D.
,
Mercier
,
K. A.
,
Moran
,
J. M.
,
Fong
,
S. S.
,
DiBiaso
,
D. D.
,
Rulf
,
J. X.
,
Kohles
,
S. S.
, and
Bonassar
,
L. J.
, 2000, “
Comparison of Chondrogenesis in Static and Perfused Bioreactor Culture
,”
Biotechnol. Prog.
8756-7938,
16
, pp.
893
896
.
10.
Lanza
,
R.
,
Langer
,
R.
, and
Vacanti
,
J.
, 2007,
Principles of Tissue Engineering
,
3rd ed.
,
Elsevier
,
San Diego, CA
.
11.
Wilson
,
C. G.
,
Bonassar
,
L. J.
, and
Kohles
,
S. S.
, 2002, “
Modeling the Dynamic Composition of Engineered Cartilage
,”
Arch. Biochem. Biophys.
0003-9861,
408
(
2
), pp.
246
254
.
12.
Tibbitt
,
M. W.
, and
Anseth
,
K. S.
, 2009, “
Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture
,”
Biotechnol. Bioeng.
0006-3592,
103
, pp.
655
663
.
13.
Barbero
,
A.
, and
Martina
,
I.
, 2007,
Tissue Engineering
,
2nd ed.
,
H.
Hauser
and
M.
Fussenegger
, eds.,
Humana
,
Totowa, NJ
, pp.
237
247
.
14.
Barlic
,
A.
,
Kregar-Velikonja
,
N.
. 2008, “
Re-Differentiation of Human Articular Chondrocytes is not Enhanced by a Rotary Bioreactor System
,”
Folia Biol. (Prague, Czech Repub.)
0015-5500,
54
, pp.
177
179
.
15.
Villanueva
,
I.
,
Weigal
,
C. A.
, and
Bryant
,
S. J.
, 2009, “
Cell-Matrix Interactions and Dynamic Mechanical Loading Influence Chondrocyte Gene Expression and Bioactivity in PEG-RGD Hydrogels
,”
Acta Biomaterialia
1742-7061,
5
(
8
), pp.
2832
2846
.
16.
Bahney
,
C. S.
,
Hsu
,
C. W.
,
Yoo
,
J. U.
,
West
,
J. L.
, and
Johnstone
,
B.
, 2011, “
A Bioresponsive Hydrogel Tuned to Chondrogenesis of Human Mesenchymal Stem Cells
,”
FASEB J.
0892-6638, in press.
17.
Elisseeff
,
J.
,
McIntosh
,
W.
,
Anseth
,
K.
,
Riley
,
S.
,
Ragan
,
P.
, and
Langer
,
R.
, 2000, “
Photoencapsulation of Chondrocytes in Poly(Ethylene Oxide)-Based Semi-Interpenetrating Networks
,”
J. Biomed. Mater. Res.
0021-9304,
51
, pp.
164
171
.
18.
Cartmell
,
S. H.
,
Porter
,
B. D.
,
Garcia
,
A. J.
, and
Guldberg
,
R. E.
, 2003, “
Effects of Medium Perfusion Rate on Cell-Seeded Three-Dimensional Bone Constructs In Vitro
,”
Tissue Eng.
1076-3279,
9
(
6
), pp.
1197
1203
.
19.
Choi
,
J. B.
,
Youn
,
I.
,
Cao
,
L.
,
Leddy
,
H. A.
,
Gilchrist
,
C. L.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2007, “
Zonal Changes in the Three-Dimensional Morphology of the Chondron Under Compression: The Relationshop Among Cellular, Pericellular, and Extracellular Deformation in Articular Cartilage
,”
J. Biomech.
0021-9290,
40
, pp.
2596
2603
.
20.
Kohles
,
S. S.
,
Wilson
,
C. G.
, and
Bonassar
,
L. J.
, 2007, “
A Mechanical Composite Spheres Analysis of Engineered Cartilage Dynamics
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
4
), pp.
473
80
.
21.
Kohles
,
S. S.
,
Respini-Irwin
,
D.
,
Inoue
,
H.
,
Barnett
,
J.
,
Adib
,
S.
,
Chiu
,
H. Y.
, and
Saha
,
A. K.
, “
A Mechanical Bioreactor Enhanced With Fluid Perfusion for Cell and Tissue Engineering
,”
ASME J. Med. Devices
1932-6181, in press.
22.
Quinn
,
T. P.
,
Flannery
,
C. M.
,
Lauria
,
D.
,
Gallagher
,
D. V.
, and
Anseth
,
K. S.
, 2009, “
An Instrumented Bioreactor for Cartilage Tissue Engineering
,”
Annual Meeting of the Society for Biomaterials
, San Antonio, TX.
23.
Chiu
,
H. Y.
,
Saha
,
A. K.
, and
Kohles
,
S. S.
, 2010, “
A Mechanical Bioreactor for Cell and Tissue Engineering
,”
Sigma Xi Scientific Honor Society, Columbia-Willamette Chapter Student Research Symposium
, Portland, OR.
24.
Mahmoudifar
,
N.
, and
Doran
,
P. M.
, 2005, “
Tissue Engineering of Human Cartilage in Bioreactors Using Single and Composite Cell-Seeded Scaffolds
,”
Biotechnol. Bioeng.
0006-3592,
91
(
3
), pp.
338
355
.
25.
Rice
,
M. A.
,
Waters
,
K. R.
, and
Anseth
,
K. S.
, 2009, “
Ultrasound Monitoring of Cartilaginous Matrix Evolution in Degradeable PEG Hydrogels
,”
Acta Biomater.
1742-7061,
5
, pp.
152
161
.
26.
Martin
,
R. B.
,
Burr
,
D. B.
, and
Sharkey
,
N. A.
, 1998,
Skeletal Tissue Mechanics
,
Springer-Verlag
,
New York
.
27.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1963, “
A Variation Approach to the Theory of the Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
127
140
.
28.
Jones
,
R. M.
, 1999,
Mechanics of Composite Materials
,
Taylor & Francis
,
Philadelphia
.
29.
Harris
,
J. R.
,
Graham
,
J.
, and
Rickwood
,
D.
, 2006,
Cell Biology Protocols
,
Wiley
,
Englewood Cliffs, NJ
.
30.
Gibson
,
F.
, and
Kohles
,
S. S.
, 2010, “
Hydrogel Biomaterials Engineering for Regenerative Cartilage Strategies
,”
Sigma Xi Scientific Honor Society, Columbia-Willamette Chapter Student Research Symposium
, Portland, OR.
31.
Fedorovich
,
N. E.
,
Oudshoorn
,
M. H.
,
van Geemen
,
D.
,
Hennink
,
W. E.
,
Alblas
,
J.
, and
Dhert
,
W. J.
, 2009, “
The Effect of Photopolymerization on Stem Cells Embedded in Hydrogels
,”
Biomaterials
0142-9612,
30
(
3
), pp.
344
353
.
32.
Oesser
,
S.
, and
Seifert
,
J.
, 2003, “
Stimulation of Type II Collagen Biosynthesis and Secretion in Bovine Chondrocytes Cultured With Degraded Collagen
,”
Cell Tissue Res.
0302-766X,
311
(
3
), pp.
393
399
.
33.
2002,
Nondestructive Evaluation: Theory, Techniques, and Applications
,
P. J.
Shull
, ed.,
Dekker
,
New York
.
34.
Agemura
,
D. H.
,
Obrien
,
W. D.
,
Olerud
,
J. E.
,
Chun
,
L. E.
, and
Eyre
,
D. E.
, 1990, “
Ultrasonic Propagation Properties of Articular Cartilage at 100 MHz
,”
J. Acoust. Soc. Am.
0001-4966,
87
(
4
), pp.
1786
1791
.
35.
Griffith
,
L. G.
, and
Naughton
,
G.
, 2002, “
Tissue Engineering-Current Challenges and Expanding Opportunities
,”
Science
0036-8075,
295
, pp.
1009
1014
.
36.
Vanderploeg
,
E. J.
,
Wilson
,
C. G.
, and
Levenston
,
M. E.
, 2008, “
Articular Chondrocytes Derived From Distinct Tissue Zones Differentially Respond to In Vitro Oscillatory Tensile Loading
,”
Osteoarthritis Cartilage
1063-4584,
16
(
10
), pp.
1228
1236
.
37.
Fermor
,
B.
,
Christensen
,
S. E.
,
Young
,
I.
,
Cernanec
,
J. M.
,
Davies
,
C. M.
, and
Weinberg
,
J. B.
, 2007, “
Oxygen, Nitric Oxide and Articular Cartilage
,”
Eur. Cell. Mater.
,
13
, pp.
56
65
.
38.
Lujan
,
T. J.
,
Wirtz
,
K. M.
,
Bahney
,
C. S.
,
Madey
,
S. M.
,
Johnstone
,
B.
, and
Bottlang
,
M.
, 2011, “
A Novel Bioreactor for the Dynamic Stimulation and Mechanical Evaluation of Multiple Tissue-Engineered Constructs
,”
Tissue Eng.
1076-3279,
17
(
3
), pp.
367
374
.
39.
Nagpal
,
S.
,
Na
,
S.
, and
Rathnachalam
,
R.
, 2005, “
Noncalcemic Actions of Vitamin D Receptor Ligands
,”
Endocr. Rev.
0163-769X,
26
(
5
), pp.
662
687
.
40.
Jadin
,
K. D.
, and
Sah
,
R. L.
, 2006,
Human Articular Cartilage
,
University of California
,
San Diego, CA
.
You do not currently have access to this content.