Electrophoretic systems commonly use metal electrodes in their construction. This paper explores and reports the differences in the electrophoretic motion of DNA (decomposition voltage, electrical field, etc.) when one electrode is constructed from a semiconductor, silicon, rather than metal. Experimental VI (voltage-current) curves for different electrode configurations (using steel and silicon) are presented. Experimental results are used to update and validate the mathematical model to reflect the differences in material selection. In addition, the model predicts large curved-field motion for DNA motion. The model helps to quantify the effect of parameters on DNA motion in biological microelectromechanical systems in order to improve device designs and protocols.

1.
David
,
R. A.
, and
Jensen
,
B. D.
, 2009, “
Modeling DNA Motion Under Electrostatic Repulsion Within a Living Cell
,”
2009 Proceedings of the ASME Micro-Nano Systems Conference
, Paper No. DETC2009-87413.
2.
David
,
R. A.
,
Black
,
J. L.
,
Jensen
,
B. D.
, and
Burnett
,
S. H.
, 2010, “
Modeling and Experimental Validation of DNA Motion During Electrophoresis
,”
2010 Proceedings of the ASME Micro-Nano Systems Conference
, Paper No. DETC2010-28541.
3.
Li
,
B.
,
Fang
,
X.
,
Luo
,
H.
,
Petersen
,
E.
,
Seo
,
Y. -S.
,
Samuilov
,
V.
,
Rafailovich
,
M.
,
Sokolov
,
J.
,
Gersappe
,
D.
, and
Chu
,
B.
, 2006, “
Influence of Electric Field Intensity, Ionic Strength, and Migration Distance on the Mobility and Diffusion in DNA Surface Electrophoresis
,”
Electrophoresis
0173-0835,
27
, pp.
1312
1321
.
4.
Slater
,
G. W.
,
Guillouzic
,
S.
,
Gauthier
,
M. G.
,
Mercier
,
J. -F.
,
Kenward
,
M.
,
McCormick
,
L. C.
, and
Tessier
,
F.
, 2002, “
Theory of DNA Electrophoresis
,”
Electrophoresis
0173-0835,
23
, pp.
3791
3816
.
5.
Pei
,
H.
,
Allison
,
S.
,
Haynes
,
B. M.
, and
Augustin
,
D.
, 2009, “
Brownian Dynamics Simulation of the Diffusion of Rods and Wormlike Chains in a Gel Modeled as a Cubic Lattice: Application to DNA
,”
J. Phys. Chem. B
1089-5647,
113
(
9
), pp.
2564
2571
.
6.
Sun
,
Y.
,
Kwok
,
Y. C.
, and
Nguyen
,
N. -T.
, 2007, “
Modeling and Experimental Characterization of Peak Tailing in DNA Gel Electrophoresis
,”
Microfluid. Nanofluid.
1613-4982,
3
(
3
), pp.
323
332
.
7.
Radivoyevitch
,
T.
, and
Cedervall
,
B.
, 1996, “
Mathematical Analysis of DNA Fragment Distribution Models Used With Pulsed-Field Gel Electrophoresis for DNA Double-Strand Break Calculations
,”
Electrophoresis
0173-0835,
17
(
6
), pp.
1087
1093
.
8.
Barkema
,
G. T.
,
Caron
,
C.
, and
Marko
,
J. F.
, 1996, “
Scaling Properties of Gel Electrophoresis of DNA
,”
Biopolymers
0006-3525,
38
, pp.
665
667
.
9.
Pernodet
,
N.
, and
Tinland
,
B.
, 1997, “
Influence of λ-DNA Concentration on Mobilities and Dispersion Coefficients During Agarose Gel Electrophoresis
,”
Biopolymers
0006-3525,
42
(
4
), pp.
471
478
.
10.
Lee
,
N.
,
Obukhov
,
S.
, and
Rubinstein
,
M.
, 1996, “
Deterministic Model of DNA Gel Electrophoresis in Strong Electric Fields
,”
Electrophoresis
0173-0835,
17
(
6
), pp.
1011
1017
.
11.
Allison
,
S. A.
,
Pei
,
H.
, and
Xin
,
Y.
, 2007, “
Modeling the Free Solution and Gel Electrophoresis of Biopolymers: The Bead Array-Effective Medium Model
,”
Biopolymers
0006-3525,
87
(
2–3
), pp.
102
114
.
12.
Krawczyk
,
M.
,
Pasciak
,
P.
,
Dydejczyk
,
A.
, and
Kulakowski
,
K.
, 2005, “
Gel Electrophoresis of DNA New Measurements and the Repton Model at High Fields
,”
Acta Phys. Pol. B
0587-4254,
36
(
5
), pp.
1653
1662
.
13.
Newman
,
M. E. J.
, and
Barkema
,
G. T.
, 1997, “
Diffusion Constant for the Repton Model of Gel Electrophoresis
,”
Phys. Rev. E
1063-651X,
56
(
3
), pp.
3468
3473
.
14.
Zheng
,
L.
,
Brody
,
J. P.
, and
Burke
,
P. J.
, 2004, “
Electronic Manipulation of DNA, Proteins, and Nanoparticles for Potential Circuit Assembly
,”
Biosens. Bioelectron.
0956-5663,
20
, pp.
606
619
.
15.
Khoshmanesh
,
K.
,
Nahavandi
,
S.
,
Baratchi
,
S.
,
Mitchell
,
A.
, and
Kalantar-zadeh
,
K.
, 2011, “
Dielectrophoretic Platforms for Bio-Microfluidic Systems
,”
Biosens. Bioelectron.
0956-5663,
26
, pp.
1800
1814
.
16.
Aten
,
Q. T.
, 2008, “
Design and Testing of a Pumpless Microelectromechanical System Nanoinjector
,” MS thesis, Brigham Young University, Provo, UT.
17.
Aten
,
Q. T.
,
Jensen
,
B. D.
, and
Burnett
,
S. H.
, 2008, “
Testing of a Pumpless MEMS Microinjection Needle Employing Electrostatic Attraction and Repulsion of DNA
,”
2008 Proceedings of the ASME Micro-Nano Systems Conference
, Paper No. DETC2008-49548.
18.
Carter
,
J.
,
Cowen
,
A.
,
Hardy
,
B.
,
Mahadevan
,
R.
,
Stonefield
,
M.
, and
Wilcenski
,
S.
, 2005,
PolyMUMPs Design Handbook Revision 11
; published online at: http://www.memscap.com/mumps/documents/PolyMUMPs.DR.v11.pdfhttp://www.memscap.com/mumps/documents/PolyMUMPs.DR.v11.pdf.
19.
Audubert
,
R.
, and
de Mende
,
S.
, 1960,
The Principles of Electrophoresis
,
Macmillan
,
London.
20.
1990,
Gel Electrophoresis of Nucleic Acids
,
2nd ed.
,
D.
Rickwood
and
B. D.
Hames
, eds.,
Oxford University Press
,
New York
.
21.
Chrambach
,
A.
, 1985,
The Practice of Quantitative Gel Electrophoresis
,
1st ed.
,
H. F.
Ebel
, ed.,
VCH Verlag GmbH
,
Deerfield Beach, FL
.
22.
Allen
,
R. C.
, and
Budowle
,
B.
, 1994,
Gel Electrophoresis of Proteins and Nucleic Acids
,
Walter de Gruyter & Co.
,
Berlin
.
23.
Wieme
,
R. J.
, 1965,
Agar Gel Electrophoresis
,
Elsevier
,
New York
.
24.
David
,
R. A.
,
Jensen
,
B. D.
,
Black
,
J. L.
,
Burnett
,
S. H.
, and
Howell
,
L. L.
, 2010, “
Modeling and Experimental Validation of DNA Motion in Uniform and Nonuniform DC Electric Fields
,”
J. Nanotechnol. Eng. Med.
1949-2944,
1
(
4
), p.
041007
.
25.
Schüler
,
T.
,
Kretschmer
,
R.
,
Jessing
,
S.
,
Urban
,
M.
,
Fritzsche
,
W.
,
Möller
,
R.
, and
Popp
,
J.
, 2009, “
A Disposable and Cost Efficient Microfluidic Device for the Rapid Chip-Based Electrical Detection of DNA
,”
Biosens. Bioelectron.
0956-5663,
25
, pp.
15
21
.
26.
Rogers
,
W. E.
, 1954,
Introduction to Electric Fields
,
R. E.
Terman
, ed.,
McGraw-Hill
,
New York
.
27.
Morse
,
P. M.
, and
Feshback
,
H.
, 1953,
Methods of Theoretical Physics
,
L. I.
Schiff
, ed.,
McGraw-Hill
,
New York
, Vol.
I
.
28.
1953,
Methods of Theoretical Physics
,
L. I.
Schiff
, ed.,
McGraw-Hill
,
New York
, Vol.
II
.
You do not currently have access to this content.