An experimental setup has been designed and built for measuring the Seebeck coefficient of bulk thermoelectric materials, thin films, and nanowire composites in the temperature range 200–350 K. The setup utilizes a differential method for measuring the Seebeck coefficient of the sample. The sample holder is a simple clamp design, utilizing a spring-loaded mounting system to load and hold the sample between two copper blocks, on which the electrical leads, as well as thermocouples, are mounted. The spring-loaded design also offers fast turn-around times, as the samples can be quickly loaded and unloaded. To measure the Seebeck coefficient, a temperature difference is generated across the sample by using four 10kΩ resistive heaters mounted in series on one of the copper blocks. The resulting slope of the thermo-emf versus temperature difference plot is used to obtain the Seebeck coefficient at any temperature. Test measurements were carried out on bulk samples of nickel (Ni), bismuth-telluride (Bi2Te3), antimony-telluride (Sb2Te3), as well as thin films and nanowire composites of Ni.

1.
Uher
,
C.
, 2000,
Semiconductors and Semimetals
,
T. M.
Tritt
, ed.,
Academic
,
San Diego, CA
, Vol.
69
, p.
139
.
2.
Dauscher
,
A.
,
Lenoir
,
B.
,
Scherrer
,
H.
, and
Caillat
,
T.
, 2002,
Recent Research Developments in Materials Science
,
S. G.
Pandalai
, ed.,
Research Signpost
,
Kerala, India
, Vol.
3
, p.
181
.
3.
Thermoelectric Handbook, Macro to Nano
, 2006,
D. M.
Rowe
, ed.,
CRC, Taylor & Francos Group
,
Boca Raton, FL
.
4.
Ponnambolam
,
V.
,
Lindsey
,
S.
,
Hickman
,
N. S.
, and
Tritt
,
T. M.
, 2006, “
Sample Probe to Measure Resistivity and Thermopower in the Temperature Range of 300–1000 K
,”
Rev. Sci. Instrum.
0034-6748,
77
(
7
), p.
073904
.
5.
Wood
,
C.
,
Chmielewski
,
A.
, and
Zoltan
,
D.
, 1988, “
Measurement of Seebeck Coefficient Using a Large Thermal Gradient
,”
Rev. Sci. Instrum.
0034-6748,
59
(
6
), pp.
951
954
.
6.
Testardi
,
L. R.
, and
McConnell
,
G. K.
, 1961, “
Measurement of the Seebeck Coefficients With Small Temperature Differences
,”
Rev. Sci. Instrum.
0034-6748,
32
(
9
), pp.
1067
1068
.
7.
Cowles
,
L. E. J.
, and
Dauncey
,
L. A.
, 1962, “
Apparatus for the Rapid Scanning of the Seebeck Coefficient of Semiconductors
,”
J. Sci. Instrum.
0950-7671,
39
(
1
), pp.
16
18
.
8.
Wood
,
C.
,
Zoltan
,
D.
, and
Stapfer
,
G.
, 1985, “
Measurement of Seebeck Coefficient Using a Light Pulse
,”
Rev. Sci. Instrum.
0034-6748,
56
(
5
), pp.
719
722
.
9.
Caskey
,
G. R.
,
Sellmyer
,
D. J.
, and
Rubin
,
L. G.
, 1969, “
A Technique for Rapid Measurement of Thermoelectric Power
,”
Rev. Sci. Instrum.
0034-6748,
40
(
10
), pp.
1280
1282
.
10.
Chaussy
,
J.
,
Guessous
,
A.
, and
Mazuer
,
J.
, 1981, “
Simultaneous Measurements of Thermopower, Thermal Conductivity, and Electrical Resistivity Between 1.2 and 350 K
,”
Rev. Sci. Instrum.
0034-6748,
52
(
11
), pp.
1721
1731
.
11.
Gee
,
W.
, and
Green
,
M.
, 1970, “
An improved Hot Probe Apparatus for the Measurement of Seebeck Coefficient
,”
J. Phys. E
0022-3735,
3
, pp.
135
136
.
12.
Goldsmid
,
H. J.
, 1986, “
A Simple Technique for Determining the Seebeck Coefficient of Thermoelectrical Materials
,”
J. Phys. E
0022-3735,
19
(
11
), pp.
921
922
.
13.
Platzek
,
D.
,
Karpinski
,
G.
,
Stiewe
,
C.
,
Ziolkowski
,
P.
,
Draser
,
C.
, and
Muller
,
E.
, 2005, “
Potential-Seebeck-Microprobe (PSM): Measuring the Spatial Resolution of the Seebeck Coefficient and the Electrical Potential
,”
International Conference on Thermoelectrics
, pp.
13
16
.
14.
Pope
,
A. L.
,
Littleton
,
R. T.
, and
Tritt
,
T. M.
, 2001, “
Apparatus for the Rapid Measurement of Electrical Transport Properties for Both Needle-Like and Bulk Materials
,”
Rev. Sci. Instrum.
0034-6748,
72
(
7
), pp.
3129
3131
.
15.
Zhou
,
Z.
, and
Uher
,
C.
, 2005, “
Apparatus for Seebeck Coefficient and Electrical Resistivity Measurements of Bulk Thermoelectric Materials at High Temperature
,”
Rev. Sci. Instrum.
0034-6748,
76
(
2
), p.
023901
.
16.
Stolzer
,
M.
,
Bechstein
,
V.
, and
Meusel
,
J.
, 1998,
Proceedings of the 4th European Workshop on Thermoelectrics
, Madrid, Spain, p.
97
.
17.
Hicks
,
L. D.
, and
Dresselhaus
,
M. S.
, 1993, “
Thermoelectric Figure of Merit of a One-Dimensional Conductor
,”
Phys. Rev. B
0556-2805,
47
(
24
), pp.
16631
16634
.
18.
Heremans
,
J.
, and
Thrush
,
C. M.
, 1999, “
Thermoelectric Power of Bismuth Nanowires
,”
Phys. Rev. B
0556-2805,
59
(
19
), pp.
12579
12583
.
19.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
,
Sun
,
X.
,
Zhang
,
Z.
,
Cronin
,
S. B.
,
Koga
,
T.
,
Ying
,
J. Y.
, and
Chen
,
G.
, 1999, “
The Promise of Low Dimensional Thermoelectric Materials
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
3
(
2
), pp.
89
100
.
20.
Venkatasubramanian
,
R.
,
Siivols
,
E.
,
Colpitts
,
T.
, and
O’ Quinn
,
B.
, 2001, “
Thin-Film Thermoelectric Devices With High Room-Temperatures Figures of Merit
,”
Nature (London)
0028-0836,
413
(
6856
), pp.
597
602
.
21.
Burkov
,
A. T.
,
Heinrich
,
A.
,
Konstantinov
,
P. P.
,
Nakama
,
T.
, and
Yagasaki
,
K.
, 2001, “
Experimental Setup for Thermopower and Resistivity Measurements at 100–1300 K
,”
Meas. Sci. Technol.
0957-0233,
12
(
3
), pp.
264
272
.
22.
Boffoue
,
O.
,
Jacquot
,
A.
,
Dauscher
,
A.
,
Lenoir
,
B.
, and
Stolzer
,
M.
, 2005, “
Experimental Setup for the Measurement of the Electrical Resistivity and Thermopower of Thin Films and Bulk Materials
,”
Rev. Sci. Instrum.
0034-6748,
76
(
5
), p.
053907
.
23.
Sarath Kumar
,
S. R.
, and
Kasiviswanathan
,
S.
, 2008, “
A Hot Probe Setup for the Measurement of Seebeck Coefficient of Thin Wires and Thin Films Using Integral Method
,”
Rev. Sci. Instrum.
0034-6748,
79
(
2
), p.
024302
.
24.
Ren
,
Z. A.
,
Che
,
G. C.
,
Jia
,
S. L.
,
Chen
,
H.
,
Ni
,
Y. M.
,
Liu
,
G. D.
, and
Zhao
,
Z. X.
, 2002, “
The Structural Change and Superconductivity in MgCxNi3 (x=0.5–1.55) and MgxCyNi3 (x=0.75–1.55, y=0.85, 1 and 1.45) and the Phase Diagram of Ni Rich Region in Mg–C–Ni Ternary System
,”
Physica C
0921-4534,
371
(
1
), pp.
1
6
.
25.
Jackson
,
D. D.
,
McCall
,
S. K.
,
Weir
,
S. T.
,
Karki
,
A. B.
,
Young
,
D. P.
,
Qiu
,
W.
, and
Vohra
,
Y. K.
, 2007, “
Cubic Laves Ferromagnet TbNi2Mn Investigated Through Ambient-Pressure Magnetization and Specific Heat and High Pressure AC Magnetic Susceptibility
,”
Phys. Rev. B
0556-2805,
75
(
22
), p.
224422
.
26.
Schönenberger
,
C.
,
van der Zande
,
B. M. I.
,
Fokkink
,
L. G. J.
,
Henny
,
M.
,
Schmid
,
C.
,
Krüger
,
M.
,
Bachtold
,
A.
,
Huber
,
R.
,
Birk
,
H.
, and
Staufer
,
U.
, 1997, “
Template Synthesis of Nanowires in Porous Polycarbonate Membranes: Electrochemistry and Morphology
,”
J. Phys. Chem. B
1089-5647,
101
(
28
), pp.
5497
5505
.
27.
Ferré
,
R.
,
Ounadjela
,
K.
,
George
,
J. M.
,
Piraux
,
L.
, and
Dubois
,
S.
, 1997, “
Magnetization Processes in Nickel and Cobalt Electrodeposited Nanowires
,”
Phys. Rev. B
0556-2805,
56
(
21
), pp.
14066
14075
.
28.
Nielsch
,
K.
,
Muller
,
F.
,
Li
,
A. P.
, and
Gosele
,
U.
, 2000, “
Uniform Nickel Deposition Into Ordered Alumina Pores by Pulsed Electrodeposition
,”
Adv. Mater.
0935-9648,
12
(
8
), pp.
582
586
.
29.
Pignard
,
S.
,
Goglio
,
G.
,
Radulescu
,
A.
,
Priaux
,
L.
,
Dubois
,
S.
,
Declemy
,
A.
, and
Duvail
,
J. L.
, 2000, “
Study of Magnetization Reversal in Individual Nickel Nanowires
,”
J. Appl. Phys.
0021-8979,
87
(
2
), pp.
824
829
.
30.
Sellmyer
,
D. J.
,
Zheng
,
M.
, and
Skomski
,
R.
, 2001, “
Magnetism of Fe, Co and Ni Nanowires in Self-Assembled Arrays
,”
J. Phys.: Condens. Matter
0953-8984,
13
(
25
), pp.
R433
R460
.
31.
Jin
,
C. G.
,
Liu
,
W. F.
,
Jia
,
C.
,
Xiang
,
X. Q.
,
Cai
,
W. L.
,
Yao
,
L. Z.
, and
Li
,
X. G.
, 2003, “
High-Filling, Large-Area Ni Nanowire Arrays and the Magnetic Properties
,”
J. Cryst. Growth
0022-0248,
258
(
3–4
), pp.
337
341
.
32.
Pan
,
H.
,
Liu
,
B.
,
Yi
,
J.
,
Poh
,
C.
,
Lim
,
S.
,
Ding
,
J.
,
Feng
,
Y.
,
Huan
,
C. H. A.
, and
Lin
,
J.
, 2005, “
Growth of Single-Crystalline Ni and Co Nanowires via Electrochemical Deposition and Their Magnetic Properties
,”
J. Phys. Chem. B
1089-5647,
109
(
8
), pp.
3094
3098
.
33.
Wen
,
S.
, and
Szpunar
,
J. A.
, 2006, “
Direct Electrodeposition of Highly Ordered Magnetic Nickel Nanowires
,”
Micro & Nano Lett.
,
1
(
2
), pp.
89
93
.
34.
Xue
,
S.
,
Cao
,
C.
, and
Zhu
,
H.
, 2006, “
Electrochemically and Template-Synthesized Nickel Nanorod Arrays and Nanotubes
,”
J. Mater. Sci.
0022-2461,
41
(
17
), pp.
5598
5601
.
35.
Tian
,
F.
,
Zhu
,
J.
, and
Wei
,
D.
, 2007, “
Fabrication and Magnetism of Radial-Easy-Magnetized Ni Nanowire Arrays
,”
J. Phys. Chem. C
1932-7447,
111
(
34
), pp.
12669
12672
.
36.
Ertan
,
A.
,
Tewari
,
S. N.
, and
Talu
,
O.
, 2008, “
Electrodeposition of Nickel Nanowires and Nanotubes Using Various Templates
,”
J. Exp. Nanosci.
1745-8080,
3
(
4
), pp.
287
295
.
37.
Imran
,
M. M. A.
, 2008, “
Structural and Magnetic Properties of Electrodeposited Ni Nanowires
,”
J. Alloys Compd.
0925-8388,
455
(
1–2
), pp.
17
20
.
38.
Shi
,
J. B.
,
Chen
,
Y. C.
,
Lee
,
C. W.
,
Lin
,
Y. T.
,
Wu
,
C.
, and
Chen
,
C. J.
, 2008, “
Optical and Magnetic Properties of 30 and 60 nm Ni Nanowires
,”
Mater. Lett.
0167-577X,
62
(
1
), pp.
15
18
.
39.
Li
,
X.
,
Wang
,
Y.
,
Song
,
G.
,
Peng
,
Z.
,
Yu
,
Y.
,
She
,
X.
, and
Li
,
J.
, 2009, “
Synthesis and Growth Mechanisms of Ni Nanotubes and Nanowires
,”
Nanoscale Res. Lett.
1931-7573,
4
, pp.
1015
1020
.
40.
Martin
,
C. R.
, 1996, “
Membrane-Based Synthesis of Nanomaterials
,”
Chem. Mater.
0897-4756,
8
(
8
), pp.
1739
1746
.
41.
Kline
,
T. R.
,
Tian
,
M.
,
Wang
,
J.
,
Sen
,
A.
,
Chan
,
M. W. H.
, and
Mallouk
,
T. E.
, 2006, “
Template-Grown Metal Nanowires
,”
Inorg. Chem.
0020-1669,
45
(
19
), pp.
7555
7565
.
42.
Zhitinskaya
,
M. K.
,
Nemov
,
S. A.
, and
Ivanova
,
L. D.
, 2002, “
The Nernst-Ettingshausen, Seebeck and Hall Effects in Sb2Te3 Single Crystals
,”
Phys. Solid State
1063-7834,
44
(
1
), pp.
42
47
.
43.
Lowhorn
,
N. D.
,
Wong-Ng
,
W.
,
Zhang
,
W.
,
Lu
,
Z. Q.
,
Otani
,
M.
,
Thomas
,
E.
,
Green
,
M.
,
Tran
,
T. N.
,
Dilley
,
N.
,
Ghamaty
,
S.
,
Elsner
,
N.
,
Hogan
,
T.
,
Downey
,
A. D.
,
Jie
,
Q.
,
Li
,
Q.
,
Obara
,
H.
,
Sharp
,
J.
,
Caylor
,
C.
,
Venkatasubramanian
,
R.
,
Willigun
,
R.
,
Yang
,
J.
,
Martin
,
J.
,
Nolas
,
G.
,
Edwards
,
B.
, and
Tritt
,
T.
, 2009, “
Round-Robin Measurements of Two Candidate Materials for a Seebeck Coefficient Standard Reference Materials
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
94
, pp.
231
234
.
44.
Blatt
,
F. J.
,
Flood
,
D. J.
,
Rowe
,
V.
, and
Schroeder
,
P. A.
, 1967, “
Magnon-Drag Thermopower in Iron
,”
Phys. Rev. Lett.
0031-9007,
18
(
11
), pp.
395
396
.
45.
Shapira
,
E.
,
Tsukernik
,
A.
, and
Selzer
,
Y.
, 2007, “
Thermopower Measurements on Individual 30 nm Nickel Nanowires
,”
Nanotechnology
0957-4484,
18
(
48
), p.
485703
.
46.
Soni
,
A.
, and
Okram
,
G. S.
, 2009, “
Size-Dependent Thermopower in Nanocrystalline Nickel
,”
Appl. Phys. Lett.
0003-6951,
95
(
1
), p.
013101
.
You do not currently have access to this content.