Carbon nanotubes (CNTs) have been regarded as an ideal reinforcements of high-performance composites with enormous applications. In this paper, the effects of pinhole defect are investigated for carbon nanotube based nanocomposites using a 3D representative volume element (RVE) with long CNTs. The CNT is modeled as a continuum hollow cylindrical shape elastic material with pinholes in it. These defects are considered on the single wall (CNTs). The mechanical properties such as Young’s modulus of elasticity are evaluated for various pinhole locations and number of defects. The influence of the pinhole defects on the nanocomposite is studied under an axial load condition. Numerical equations are used to extract the effective material properties for the different geometries of RVEs with nondefective CNTs. The field-emission microscopy (FEM) results obtained for nondefective CNTs are consistent with the analytical results for cylindrical RVEs, which validate the proposed model. It is observed that the presence of pinhole defects significantly reduces the effective reinforcement when compared with nondefective nanotubes, and this reinforcement decreases with the increase in the number of pinhole defects. It is also found from the simulation results that the geometry of RVE does not have much significance on the stiffness of nanocomposites.

1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Harrison
,
B. S.
, and
Atala
,
A.
, 2007, “
Review Carbon Nanotube Applications for Tissue Engineering
,”
Biomaterials
0142-9612,
28
, pp.
344
353
.
3.
Bianco
,
A.
,
Sainz
,
R.
,
Li
,
S.
,
Dumortier
,
H.
,
Lacerda
,
L.
,
Kostarelos
,
K.
,
Giordani
,
S.
, and
Prato
,
M.
, 2008, “
Biomedical Applications of Functionalised Carbon Nanotubes
,”
Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes
,
Springer Science+Media B.V.
,
New York
.
4.
Li
,
C.
, and
Chou
,
T. -W.
, 2003, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
2487
2499
.
5.
Chang
,
T.
, and
Gao
,
H.
, 2003, “
Size-Dependent Elastic Properties of a Single-Walled Carbon Nanotube via a Molecular Mechanics Model
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
1059
1074
.
6.
Krishnan
,
A.
,
Dujardin
,
E.
,
Ebbesen
,
T. W.
,
Yianilos
,
P. N.
, and
Treacy
,
M. M. J.
, 1998, “
Young’s Modulus of Single-Walled Nanotubes
,”
Phys. Rev. B
0556-2805,
58
, pp.
14013
14019
.
7.
Yao
,
N.
, and
Lordi
,
V.
, 1998, “
Young’s Modulus of Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
84
, pp.
1939
1943
.
8.
Lu
,
J. P.
, 1997, “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Phys. Rev. Lett.
0031-9007,
79
, pp.
1297
1300
.
9.
Qian
,
D.
,
Liu
,
W. K.
, and
Ruoff
,
R. S.
, 2001, “
Mechanics of C60 in Nanotubes
,”
J. Phys. Chem. B
1089-5647,
105
, pp.
10753
10758
.
10.
Bower
,
C.
,
Rosen
,
R.
,
Jin
,
L.
,
Han
,
J.
, and
Zhou
,
O.
, 1999, “
Deformation of Carbon Nanotubes in Nanotube-Polymer Composites
,”
Appl. Phys. Lett.
0003-6951,
74
, pp.
3317
3319
.
11.
Chen
,
X. L.
, and
Liu
,
Y. J.
, 2004, “
Square Representative Volume Elements for Evaluating the Effective Material Properties of Carbon Nanotube-Based Composites
,”
Comput. Mater. Sci.
0927-0256,
29
, pp.
1
11
.
12.
Liu
,
Y. J.
, and
Chen
,
X. L.
, 2003, “
Evaluations of the Effective Materials Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element
,”
Mech. Mater.
0167-6636,
35
, pp.
69
81
.
13.
Ruoff
,
R. S.
,
Qian
,
D.
, and
Liu
,
W. K.
, 2003, “
Mechanical Properties of Carbon Nanotubes: Theoretical Predictions and Experimental Measurements
,”
C. R. Phys.
1631-0705,
4
, pp.
993
1008
.
14.
Ebbesen
,
T. W.
, and
Takada
,
T.
, 1995, “
Topological and sp3 Defect Structures in Nanotubes
,”
Carbon
0008-6223,
33
(
7
), pp.
973
978
.
15.
Hirai
,
Y.
,
Nishimaki
,
S.
,
Mori
,
H.
,
Kimoto
,
Y.
,
Akita
,
S.
,
Nakayama
,
Y.
, and
Tanaka
,
Y.
, 2003, “
Molecular Dynamics Studies on Mechanical Properties of Carbon Nano Tubes With Pinhole Defects
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
42
, pp.
4120
4123
.
16.
Halpin Affdl
,
J. C.
, and
Kardos
,
J. L.
, 1976, “
The Halpin-Tsai Equations: A Review
,”
Polym. Eng. Sci.
0032-3888,
16
(
5
), pp.
344
352
.
17.
Song
,
Y. S.
, and
Youn
,
J. R.
, 2006, “
Modeling of Effective Elastic Properties for Polymer Based Carbon Nanotube Composites
,”
Polymer
0032-3861,
47
, pp.
1741
1748
.
18.
Kulathunga
,
D. D. T. K.
,
Ang
,
K. K.
, and
Reddy
,
J. N.
, 2010, “
Molecular Dynamics Analysis on Buckling of Defective Carbon Nanotubes
,”
J. Phys.: Condens. Matter
0953-8984,
22
, p.
345301
.
19.
Wang
,
Q.
,
Varadan
,
V. K.
,
Xiang
,
Y.
,
Han
,
Q. K.
, and
Wen
,
B. C.
, 2008, “
On Instability of Single-Walled Carbon Nanotubes With a Vacancy Defect
,”
Int. J. Struct. Stab. Dyn.
0219-4554,
8
, pp.
357
366
.
20.
Joshi
,
U. A.
,
Joshi
,
P.
,
Harsha
,
S. P.
, and
Sharma
,
S. C.
, 2010, “
Evaluation of the Mechanical Properties of CNT Based Composites Using Hexagonal RVE
,”
J. Nanotechnol. Eng. Med.
1949-2944,
1
(
3
), p.
031006
.
You do not currently have access to this content.