This report discusses the compatibility of hematite nanotubes with PC12 cells and the use of these hematite nanotubes to deliver nerve growth factor (NGF) for the differentiation and growth of PC12 cells. The hematite nanotubes used in this work were synthesized using template-assisted thermal decomposition method, followed by dissolving the template. The synthesized hematite nanotubes have a diameter around 200 nm and an average length of about 10μm, and they have a low coercivity (about 10 Oe) at room temperature. To study the biocompatibility of hematite nanotubes, PC12 cells were cultured in the presence of hematite nanotubes. Neurite (axon and dendrite) outgrowth, formation of morphological connections, and close contacts between PC12 cells and hematite nanotubes unequivocally confirmed the biocompatibility of hematite nanotubes. The efficiency of hematite nanotubes to bind with NGF and the ability of the NGF-incorporated hematite nanotubes to release the bound NGF were also investigated. It is found that NGF-incorporated hematite nanotubes enabled the differentiation of PC12 cells into neurons, and the filopodia extending from growth cones were in close proximity to the NGF-incorporated hematite nanotubes, at times appearing to extend toward or into them. These observations indicate that hematite nanotubes can be used as a vehicle for NGF delivery. This research paves the way toward developing potential treatments using magnetic nanotubes with incorporated growth factors for neurodegenerative disorders and injuries to the nervous system in the future.

1.
Campbell
,
N. A.
,
Reece
,
J. B.
,
Mitchell
,
L. G.
, and
Taylor
,
M. R.
, 2003,
Biology: Concepts & Connections
,
4th ed.
,
Benjamin Cummings
,
San Francisco, CA
.
2.
Kandel
,
E. R.
,
Schwartz
,
J. H.
, and
Jessell
,
T. M.
, 2000,
Principles of Neural Science
,
4th ed.
,
McGraw-Hill
,
New York
.
3.
Martin
,
A. R.
,
Wallace
,
B. G.
,
Fuchs
,
P. A.
, and
Nicholls
,
J. G.
, 2001,
From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System
,
4th ed.
,
Sinauer Associates
,
Sunderland, MA
.
4.
Levitan
,
I. B.
, and
Kaczmarek
,
L. K.
, 2001,
The Neuron: Cell and Molecular Biology
,
3rd ed.
,
Oxford University Press
,
London
.
5.
Svenningsson
,
P.
,
Chergui
,
K.
,
Rachleff
,
I.
,
Flajolet
,
M.
,
Zhang
,
X. Q.
,
El Yacoubi
,
M.
,
Vaugeois
,
J. M.
,
Nomikos
,
G. G.
, and
Greengard
,
P.
, 2006, “
Alterations in 5-HT1B Receptor Function by P11 in Depression-Like States
,”
Science
0036-8075,
311
, pp.
77
80
.
6.
Azanza
,
M. J.
, and
Calvo
,
A. C.
, 2000, “
Snail Neuron Bioelectric Activity Induced Under Static or Sinusoidal Magnetic Fields Reproduces Mammal Neuron Responses Under Transcranial Magnetic Stimulation
,”
Electro- Magnetobiol.
1061-9526,
19
(
3
), pp.
303
319
.
7.
Yamaguchi
,
M.
,
Yamada
,
S.
,
Daimon
,
N.
, and
Yamamoto
,
I.
, 1989, “
Electromagnetic Mechanism of Magnetic Nerve Stimulation
,”
J. Appl. Phys.
0021-8979,
66
(
3
), pp.
1459
1465
.
8.
Hirai
,
T.
, and
Yoneda
,
Y.
, 2005, “
Transcriptional Regulation of Neuronal Genes and Its Effect on Neural Functions: Gene Expression in Response to Static Magnetism in Cultured Rat Hippocampal Neurons
,”
J. Pharmacol. Sci.
,
98
, pp.
219
224
.
9.
Moore
,
S. K.
, 2006, “
Psychiatry’s Shocking New Tools
,”
IEEE Spectrum
0018-9235,
43
(
3
), pp.
24
31
.
10.
Hu
,
H.
,
Ni
,
Y.
,
Montana
,
V.
,
Haddon
,
R. C.
, and
Parpura
,
V.
, 2004, “
Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth
,”
Nano Lett.
1530-6984,
4
(
3
), pp.
507
511
.
11.
Zhang
,
X.
,
Prasad
,
S.
,
Niyogi
,
S.
,
Morgan
,
A.
,
Ozkan
,
M.
, and
Ozkan
,
C. S.
, 2005, “
Guided Neurite Growth on Patterned Carbon Nanotubes
,”
Sens. Actuators B
0925-4005,
106
, pp.
843
850
.
12.
Lovat
,
V.
,
Pantarotto
,
D.
,
Lagostena
,
L.
,
Cacciari
,
B.
,
Grandolfo
,
M.
,
Righi
,
M.
,
Spalluto
,
G.
,
Prato
,
M.
, and
Ballerini
,
L.
, 2005, “
Carbon Nanotube Substrates Boost Neuronal Electrical Signaling
,”
Nano Lett.
1530-6984,
5
(
6
), pp.
1107
1110
.
13.
Xie
,
J.
,
Chen
,
L. F.
,
Aatre1
,
K. R.
,
Srivatsan
,
M.
, and
Varadan
,
V. K.
, 2006, “
Somatosensory Neurons Grown on Functionalized Carbon Nanotube Mats
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
N85
N88
.
14.
Pankhurst
,
Q. A.
,
Connolly
,
J.
,
Jones
,
S. K.
, and
Dobson
,
J.
, 2003, “
Applications of Magnetic Nanoparticles in Biomedicine
,”
J. Phys. D: Appl. Phys.
0022-3727,
36
, pp.
R167
R181
.
15.
Son
,
S. J.
,
Reichel
,
J.
,
He
,
B.
,
Schuchman
,
M.
, and
Lee
,
S. B.
, 2005, “
Magnetic Nanotubes for Magnetic-Field-Assisted Bioseparation, Biointeraction, and Drug Delivery
,”
J. Am. Chem. Soc.
0002-7863,
127
, pp.
7316
7317
.
16.
Liu
,
Z.
,
Zhang
,
D.
,
Han
,
S.
,
Li
,
C.
,
Lei
,
B.
,
Lu
,
W.
,
Fang
,
J.
, and
Zhou
,
C.
, 2005, “
Single Crystalline Magnetite Nanotubes
,”
J. Am. Chem. Soc.
0002-7863,
127
, pp.
6
7
.
17.
Bai
,
X.
,
Son
,
S. J.
,
Zhang
,
S. X.
,
Liu
,
W.
,
Jordan
,
E. K.
,
Frank
,
J. A.
,
Venkatesan
,
T.
, and
Lee
,
S. B.
, 2008, “
Synthesis of Superparamagnetic Nanotubes as MRI Contrast Agents and for Cell Labeling
,”
Nanomedicine
1743-5889,
3
(
2
), pp.
163
174
.
18.
Plank
,
C.
,
Schillinger
,
U.
,
Scherer
,
F.
,
Bergemann
,
C.
,
Rémy
,
J. S.
,
Krötz
,
F.
,
Anton
,
M.
,
Lausier
,
J.
, and
Rosenecker
,
J.
, 2003, “
The Magnetofection Method: Using Magnetic Force to Enhance Gene Delivery
,”
Biol. Chem.
1431-6730,
384
, pp.
737
747
.
19.
Varadan
,
V. K.
,
Chen
,
L. F.
, and
Xie
,
J.
, 2008,
Nanomedicine: Design and Applications of Magnetic Nanomaterials, Nanosensors and Nanosystems
,
Wiley
,
Chichester, UK
.
20.
Sui
,
Y. C.
,
Skomski
,
R.
,
Sorge
,
K. D.
, and
Sellmyer
,
D. J.
, 2004, “
Magnetic Nanotubes Produced by Hydrogen Reduction
,”
J. Appl. Phys.
0021-8979,
95
, pp.
7151
7153
.
21.
Chen
,
L. F.
,
Xie
,
J.
,
Yancey
,
J.
,
Srivatsan
,
M.
, and
Varadan
,
V. K.
, 2007, “
Experimental Investigation of Magnetic Nanotubes in PC-12 Neuron Cells Culturing
,”
Proc. SPIE
0277-786X,
6528
, p.
65280L
.
22.
Xie
,
J.
,
Chen
,
L. F.
,
Yancey
,
J.
,
Srivatsan
,
M.
, and
Varadan
,
V. K.
, 2008, “
The Effects of Functional Magnetic Nanotubes With Incorporated Nerve Growth Factor in Neuronal Differentiation of PC12 Cells
,”
Nanotechnology
0957-4484,
19
, p.
105101
.
You do not currently have access to this content.