Magnetic drug targeting can be used for treating stenosis and thrombosis in partly occluded blood vessels. Herein, a numerical investigation of magnetic drug targeting using functionalized magnetic microspheres in partly occluded blood vessels is conducted. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow. An implantable cylindrical permanent magnet insert is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Parametric investigation is conducted, and the influence of the flow Re, magnetic insert diameter, and its radial and axial position on the “targeting efficiency” is reported. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug-carrying magnetic particles in a predesignated target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for an in vitro setup for the investigation of magnetic drug targeting in stenosed blood vessels.

1.
Lübbe
,
A. S.
,
Alexiou
,
C.
, and
Bergemann
,
C.
, 2001, “
Clinical Applications of Magnetic Drug Targeting
,”
J. Surg. Res.
0022-4804,
95
, pp.
200
206
.
2.
Alexiou
,
C.
,
Schmidt
,
A.
,
Klein
,
R.
,
Hulin
,
P.
,
Bergemann
,
C.
, and
Arnold
,
W.
, 2002, “
Magnetic Drug Targeting: Biodistribution and Dependency on Magnetic Field Strength
,”
J. Magn. Magn. Mater.
0304-8853,
252
, pp.
363
366
.
3.
Rusetski
,
A. N.
, and
Ruuge
,
E. K.
, 1990, “
Magnetic Fluid as a Possible Drug Carrier for Thrombosis Treatment
,”
J. Magn. Magn. Mater.
0304-8853,
85
, pp.
299
302
.
4.
Gillies
,
G. T.
,
Ritter
,
R. C.
,
Broaddus
,
W. C.
,
Grady
,
M. S.
,
Howard
,
M. A.
, III
, and
McNeil
,
R. G.
, 1994, “
Magnetic Manipulation Instrumentation for Medical Physics Research
,”
Rev. Sci. Instrum.
0034-6748,
65
, pp.
533
545
.
5.
Schmidt
,
R. F.
, and
Thews
,
G.
, 1995,
Physiologie des Menschen
,
26th ed.
,
Springer
,
Berlin
, p.
515
.
6.
Kreuter
,
J.
, 1983, “
Evaluation of Nanoparticles as Drug Delivery Systems I: Preparation Methods
,”
Pharm. Acta Helv.
0031-6865,
58
, pp.
196
209
.
7.
Müller
,
R. H.
,
Lück
,
M.
,
Harnisch
,
S.
, and
Thode
,
K.
, 1997, “
Intravenously Injected Particles; Surface Properties and Interaction With Blood Proteins—The Key Determining the Organ Distribution
,”
Proceedings of the Scientific and Clinical Applications of Magnetic Carriers
, edited by
W.
Schütt
,
J.
Teller
,
U.
Häfeli
, and
M.
Zborowski
, pp.
135
148
.
8.
Moghimi
,
M. M.
,
Hunter
,
A. C.
, and
Murray
,
J. C.
, 2001, “
Long-Circulating and Target-Specific Nanoparticles: Theory to Practice
,”
Pharmacol. Rev.
0031-6997,
53
, pp.
283
318
.
9.
Häfeli
,
U. O.
,
Gilmour
,
K.
,
Zhou
,
A.
,
Lee
,
S.
, and
Hayden
,
M. E.
, 2007, “
Modeling of Magnetic Bandages for Drug Targeting: Button vs. Halbach arrays
,”
J. Magn. Magn. Mater.
0304-8853,
311
, pp.
323
329
.
10.
Williams
,
P. S.
,
Carpino
,
F.
, and
Zborowski
,
M.
, 2009, “
Magnetic Nanoparticle Drug Carriers and Their Study by Quadrupole Magnetic Field-Flow Fractionation
,”
Mol. Pharmacol.
0026-895X,
6
, pp.
1290
1306
.
11.
Voltairas
,
P. A.
,
Fotiades
,
D. I.
, and
Michalis
,
L. K.
, 2002, “
Hydrodynamics of Magnetic Drug Targeting
,”
J. Biomech.
0021-9290,
35
, pp.
813
821
.
12.
Torchilin
,
V. P.
, 1995, “
Targeting of Drugs and Drug Carriers Within the Cardiovascular System
,”
Adv. Drug Delivery Rev.
0169-409X,
17
, pp.
75
101
.
13.
Moulton
,
K. S.
,
Heller
,
E.
,
Konerding
,
M. A.
,
Flynn
,
E.
,
Palinski
,
W.
, and
Folkman
,
J.
, 1999, “
Angiogenesis Inhibitors Endostatin or TNP-470 Reduce Intimal Neovascularization and Plaque Growth in Apolipoprotein E-Deficient Mice
,”
Circulation
0009-7322,
99
, pp.
1726
1732
.
14.
Herbst
,
R. S.
,
Madden
,
T. L.
,
Tran
,
H. T.
,
Blumenschein
,
G. R.
, Jr.
,
Meyers
,
C. A.
,
Seabrooke
,
L. F.
,
Khuri
,
F. R.
,
Puduvalli
,
V. K.
,
Allgood
,
V.
,
Fritsche
,
H. A.
, Jr.
,
Hinton
,
L.
,
Newman
,
R. A.
,
Crane
,
E. A.
,
Fossella
,
F. V.
,
Dordal
,
M.
,
Goodin
,
T.
, and
Hong
,
W. K.
, 2002, “
Safety and Pharmacokinetic Effects of TNP-470, an Angiogenesis Inhibitor, Combined With Paclitaxel in Patients With Solid Tumors: Evidence for Activity In Non-Small-Cell Lung Cancer
,”
J. Clin. Oncol.
0732-183X,
20
, pp.
4440
4447
.
15.
Liu
,
S.
,
Widom
,
J.
,
Kemp
,
C. W.
,
Crews
,
C. M.
, and
Clardy
,
J.
, 1998, “
Structure of Human Methionine Aminopeptidase-2 Complexed With Fumagillin
,”
Science
0036-8075,
282
, pp.
1324
1327
.
16.
Lanza
,
G. M.
,
Yu
,
X.
,
Winter
,
P. M.
,
Abendschein
,
D. R.
,
Karukstis
,
K. K.
,
Scott
,
M. J.
,
Chinen
,
L. K.
,
Fuhrhop
,
R. W.
,
Scherrer
,
D. E.
, and
Wickline
,
S. A.
, 2002, “
A Novel Site-Targeted Ultrasonic Contrast Agent With Broad Biomedical Application
,”
Circulation
0009-7322,
106
, pp.
2842
2847
.
17.
Sousa
,
J. E.
,
Costa
,
M. A.
,
Abizaid
,
A.
,
Abizaid
,
A. S.
,
Feres
,
F.
,
Pinto
,
I. M. F.
,
Seixas
,
A. C.
,
Staico
,
R.
,
Mattos
,
L. A.
,
Sousa
,
A. G. M. R.
,
Falotico
,
R.
,
Jaeger
,
J.
,
Popma
,
J. J.
, and
Serruys
,
P. W.
, 2001, “
Lack of Neointimal Proliferation After Implantation of Sirolimus-Coated Stents in Human Coronary Arteries: A Quantitative Coronary Angiography and Three-Dimensional Intravascular Ultrasound Study
,”
Circulation
0009-7322,
103
, pp.
192
204
.
18.
Chen
,
H.
,
Kaminski
,
M. D.
,
Pytel
,
P.
,
MacDonald
,
L.
, and
Rosengart
,
A. J.
, 2008, “
Capture of Magnetic Carriers Within Large Arteries Using External Magnetic Fields
,”
J. Drug Target.
1061-186X,
16
, pp.
262
268
.
19.
Alexiou
,
C.
,
Arnold
,
W.
,
Klein
,
R. J.
,
Parak
,
F. G.
,
Hulin
,
P.
,
Bergemann
,
C.
,
Erhardt
,
W.
,
Wagenpfeil
,
S.
, and
Lübbe
,
A. S.
, 2000, “
Locoregional Cancer Treatment With Magnetic Drug Targeting
,”
Cancer Res.
0008-5472,
60
, pp.
6641
6648
.
20.
Jordan
,
A.
,
Scholz
,
R.
,
Maier-Hauff
,
K.
,
Johannsen
,
M.
,
Wust
,
P.
,
Nadobny
,
J.
,
Schirra
,
H.
,
Schmidt
,
H.
,
Deger
,
S.
,
Loening
,
S.
,
Lanksch
,
W.
, and
Felix
,
R.
, 2001, “
Presentation of a New Magnetic Field Therapy System for the Treatment of Human Solid Tumors With Magnetic Fluid Hyperthermia
,”
J. Magn. Magn. Mater.
0304-8853,
225
(
1–2
), pp.
118
126
.
21.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Eckelt
,
L.
,
Feussner
,
A.
,
WaldöFner
,
N.
,
Scholz
,
R.
,
Deger
,
S.
,
Wust
,
P.
,
Loening
,
S. A.
, and
Jordan
,
A.
, 2005, “
Clinical Hyperthermia of Prostate Cancer Using Magnetic Nanoparticles: Presentation of a New Interstitial Technique
,”
Int. J. Hyperthermia
0265-6736,
21
, pp.
637
647
.
22.
Pankhurst
,
Q. A.
,
Connolly
,
J.
,
Jones
,
S. K.
, and
Dobson
,
J.
, 2003, “
Applications of Magnetic Nanoparticles in Biomedicine
,”
J. Phys. D: Appl. Phys.
0022-3727,
36
, pp.
R167
R181
.
23.
Avilés
,
M. O.
,
Ebner
,
A. D.
, and
Ritter
,
J. A.
, 2008, “
Implant Assisted-Magnetic Drug Targeting: Comparison of In Vitro Experiments With Theory
,”
J. Magn. Magn. Mater.
0304-8853,
320
, pp.
2704
2713
.
24.
Forbes
,
Z. G.
,
Yellen
,
B. B.
,
Halverson
,
D. S.
,
Fridman
,
G.
,
Barbee
,
K. A.
, and
Friedman
,
G.
, 2008, “
Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
, pp.
643
649
.
25.
Furlani
,
E. J.
, and
Furlani
,
E. P.
, 2007, “
A Model for Predicting Magnetic Targeting of Multifunctional Particles in the Microvasculature
,”
J. Magn. Magn. Mater.
0304-8853,
312
, pp.
187
193
.
26.
Yellen
,
B. B.
,
Forbes
,
Z. G.
,
Halverson
,
D. S.
,
Fridman
,
G.
,
Barbee
,
K. A.
,
Chorny
,
M.
,
Levy
,
R.
, and
Friedman
,
G.
, 2005, “
Targeted Drug Delivery to Magnetic Implants for Therapeutic Applications
,”
J. Magn. Magn. Mater.
0304-8853,
293
, pp.
647
654
.
27.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation
,”
Arteriosclerosis (Dallas)
0276-5047,
5
, pp.
293
302
.
28.
Haverkort
,
J. W.
,
Kenjereš
,
S.
, and
Kleijn
,
C. R.
, 2009, “
Computational Simulations of Magnetic Particle Capture in Arterial Flows
,”
Ann. Biomed. Eng.
0090-6964,
37
, pp.
2436
2448
.
29.
Neofytou
,
P.
, and
Tsangaris
,
S.
, 2004, “
Computational Haemodynamics and the Effects of Blood Rheological Models on the Flow Through an Arterial Stenosis
,”
European Congress on Computational Methods in Applied Sciences and Engineering
.
30.
Modak
,
N.
,
Datta
,
A.
, and
Ganguly
,
R.
, 2009, “
Cell Separation in a Microfluidic Channel Using Magnetic Microspheres
,”
Microfluid. Nanofluid.
1613-4982,
6
, pp.
647
660
.
31.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops, and Particles
(
Academic
,
New York
).
32.
Nataf
,
F.
, 1989, “
An Open Boundary Condition for the Computation of the Steady Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
0021-9991,
85
, pp.
104
129
.
33.
Pries
,
A. R.
,
Secomb
,
T. W.
, and
Gaehtgens
,
P.
, 1996, “
Biophysical Aspects of Blood Flow Through the Microvasculature
,”
Cardiovasc. Res.
0008-6363,
32
, pp.
654
668
.
34.
Hirt
,
C. W.
,
Nicols
,
B. D.
, and
Romero
,
N. C.
, 1975,
Los Alamos Scientific Laboratory
, Report No. LA-5852.
35.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, D.C.
).
36.
Banerjee
,
M. K.
,
Nag
,
D.
,
Ganguly
,
R.
, and
Datta
,
A.
, 2008, “
Stenotic Interaction on Haemodynamic Parameters in Double Stenoses
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
22
, pp.
609
622
.
37.
Tu
,
C.
, and
Deville
,
M.
, 1996, “
Pulsatile Flow of Non-Newtonian Fluids Through Arterial Stenosis
,”
J. Biomech.
0021-9290,
29
, pp.
899
908
.
38.
Sinha
,
A.
,
Ganguly
,
R.
, and
Puri
,
I. K.
, 2009, “
Magnetic Separation From Superparamagnetic Particle Suspensions
,”
J. Magn. Magn. Mater.
0304-8853,
321
, pp.
2251
2256
.
39.
Ganguly
,
R.
,
Gaind
,
A. P.
, and
Puri
,
I. K.
, 2005, “
A Strategy for the Assembly of Three-Dimensional Mesoscopic Structures Using a Ferrofluid
,”
Phys. Fluids
1070-6631,
17
, p.
057103
.
You do not currently have access to this content.