Clinical neurology and neurosurgery are two fields that face some of the most challenging and exciting problems remaining in medicine. Brain tumors, paralysis after trauma or stroke, and neurodegerative diseases are some of the many disorders for which effective therapies remain elusive. Nanotechnology seems poised to offer promising new solutions to some of these difficult problems. The latest advances in materials engineered at the nanoscale for applications relevant to the clinical neurosciences, such as medical imaging, nanotherapies for neurologic disease, nerve tissue engineering, and nanotechnological contributions to neuroelectrodes and brain-machine interface technology are reviewed. The primary classes of materials discussed include superparamagnetic iron oxide nanoparticles, gold nanoparticles, liposomes, carbon fullerenes, and carbon nanotubes. The potential of the field and the challenges that must be overcome for the current technology to become available clinically are highlighted.

1.
Chapon
,
C.
,
Franconi
,
F.
,
Lacoeuille
,
F.
,
Hindre
,
F.
,
Saulnier
,
P.
,
Benoit
,
J. P.
,
Le Jeune
,
J. J.
, and
Lemaire
,
L.
, 2009, “
Imaging E-Selectin Expression Following Traumatic Brain Injury in the Rat Using a Targeted USPIO Contrast Agent
,”
Magn. Reson. Mater. Phys., Biol., Med.
1352-8661,
22
, pp.
167
174
.
2.
Kanno
,
S.
,
Wu
,
Y.
,
Lee
,
P.
,
Dodd
,
S.
,
Williams
,
M.
,
Griffith
,
B.
, and
Ho
,
C.
, 2001, “
Macrophage Accumulation Associated With Rat Cardiac Allograft Rejection Detected by Magnetic Resonance Imaging With Ultrasmall Superparamagnetic Iron Oxide Particles
,”
Circulation
0009-7322,
104
, pp.
934
938
.
3.
Kooi
,
M.
,
Cappendijk
,
V.
,
Cleutjens
,
K.
,
Kessels
,
A.
,
Kitslaar
,
P.
,
Borgers
,
M.
,
Frederik
,
P.
,
Daemen
,
M.
, and
Van Engelshoven
,
J.
, 2003, “
Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by In Vivo Magnetic Resonance Imaging
,”
Circulation
0009-7322,
107
, pp.
2453
2458
.
4.
Bernd
,
H.
,
De Kerviler
,
E.
,
Gaillard
,
S.
, and
Bonnemain
,
B.
, 2009, “
Safety and Tolerability of Ultrasmall Superparamagnetic Iron Oxide Contrast Agent Comprehensive Analysis of a Clinical Development Program
,”
Invest. Radiol.
0020-9996,
44
, pp.
336
342
.
5.
Thorek
,
D. L. J.
,
Chen
,
A.
,
Czupryna
,
J.
, and
Tsourkas
,
A.
, 2006, “
Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
23
38
.
6.
Muldoon
,
L.
,
Sàndor
,
M.
,
Pinkston
,
K.
, and
Neuwelt
,
E.
, 2005, “
Imaging, Distribution, and Toxicity of Superparamagnetic Iron Oxide Magnetic Resonance Nanoparticles in the Rat Brain and Intracerebral Tumor
,”
Neurosurgery
0148-396X,
57
, pp.
785
796
.
7.
Gupta
,
A.
, and
Wells
,
S.
, 2004, “
Surface-Modified Superparamagnetic Nanoparticles for Drug Delivery: Preparation, Characterization, and Cytotoxicity Studies
,”
IEEE Trans. Nanobiosci.
1536-1241,
3
, pp.
66
73
.
8.
Matuszewski
,
L.
,
Persigehl
,
T.
,
Wall
,
A.
,
Schwindt
,
W.
,
Tombach
,
B.
,
Fobker
,
M.
,
Poremba
,
C.
,
Ebert
,
W.
,
Heindel
,
W.
, and
Bremer
,
C.
, 2005, “
Cell Tagging With Clinically Approved Iron Oxides: Feasibility and Effect of Lipofection, Particle Size, and Surface Coating on Labeling Efficiency
,”
Radiology
0033-8419,
235
, pp.
155
161
.
9.
Hahn
,
P.
,
Stark
,
D.
,
Lewis
,
J.
,
Saini
,
S.
,
Elizondo
,
G.
,
Weissleder
,
R.
,
Fretz
,
C.
, and
Ferrucci
,
J.
, 1990, “
First Clinical Trial of a New Superparamagnetic Iron Oxide for Use as an Oral Gastrointestinal Contrast Agent in MR Imaging
,”
Radiology
0033-8419,
175
, pp.
695
700
.
10.
Weissleder
,
R.
,
Stark
,
D.
,
Engelstad
,
B.
,
Bacon
,
B.
,
Compton
,
C.
,
White
,
D.
,
Jacobs
,
P.
, and
Lewis
,
J.
, 1989, “
Superparamagnetic Iron Oxide: Pharmacokinetics and Toxicity
,”
AJR, Am. J. Roentgenol.
0361-803X,
152
, pp.
167
173
.
11.
Maeda
,
H.
,
Wu
,
J.
,
Sawa
,
T.
,
Matsumura
,
Y.
, and
Hori
,
K.
, 2000, “
Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review
,”
J. Controlled Release
0168-3659,
65
, pp.
271
284
.
12.
Kroll
,
R. A.
, and
Neuwelt
,
E. A.
, 1998, “
Outwitting the Blood-Brain Barrier for Therapeutic Purposes: Osmotic Opening and Other Means
,”
Neurosurgery
0148-396X,
42
, pp.
1083
1099
.
13.
Claes
,
A.
,
Gambarota
,
G.
,
Hamans
,
B.
,
Van Tellingen
,
O.
,
Wesseling
,
P.
,
Maass
,
C.
,
Heerschap
,
A.
, and
Leenders
,
W.
, 2008, “
Magnetic Resonance Imaging-Based Detection of Glial Brain Tumors in Mice After Antiangiogenic Treatment
,”
Int. J. Cancer
0020-7136,
122
, pp.
1981
1986
.
14.
Vellinga
,
M. M.
,
Engberink
,
R. D. O.
,
Seewann
,
A.
,
Pouwels
,
P. J. W.
,
Wattjes
,
M. P.
,
Van Der Pol
,
S. M. A.
,
Pering
,
C.
,
Polman
,
C. H.
,
De Vries
,
H. E.
,
Geurts
,
J. J. G.
, and
Barkhof
,
F.
, 2008, “
Pluriformity of Inflammation in Multiple Sclerosis Shown by Ultra-Small Iron Oxide Particle Enhancement
,”
Brain
0006-8950,
131
, pp.
800
807
.
15.
Wei
,
L.
,
Zhou
,
G.
,
Li
,
Z.
,
He
,
L.
,
Gao
,
M.
,
Tan
,
J.
, and
Lei
,
H.
, 2007, “
Detection of Toxoplasmic Lesions in Mouse Brain by USPIO-Enhanced Magnetic Resonance Imaging
,”
Magn. Reson. Imaging
0730-725X,
25
, pp.
1442
1448
.
16.
Jander
,
S.
,
Schroeter
,
M.
, and
Saleh
,
A.
, 2007, “
Imaging Inflammation in Acute Brain Ischemia
,”
Stroke
0039-2499,
38
, pp.
642
645
.
17.
Kneuer
,
C.
,
Ehrhardt
,
C.
,
Radomski
,
M.
, and
Bakowsky
,
U.
, 2006, “
Selectins-Potential Pharmacological Targets?
,”
Drug Discovery Today
1359-6446,
11
, pp.
1034
1040
.
18.
Politi
,
L. S.
,
Bacigaluppi
,
M.
,
Brambilla
,
E.
,
Cadioli
,
M.
,
Falini
,
A.
,
Comi
,
G.
,
Scotti
,
G.
,
Martino
,
G.
, and
Pluchino
,
S.
, 2007, “
Magnetic Resonance-Based Tracking and Quantification of Intravenously Injected Neural Stem Cell Accumulation in the Brains of Mice With Experimental Multiple Sclerosis
,”
Stem Cells
1066-5099,
25
, pp.
2583
2592
.
19.
Saleh
,
A.
,
Schroeter
,
M.
,
Ringelstein
,
A.
,
Hartung
,
H. P.
,
Siebler
,
M.
,
Modder
,
U.
, and
Jander
,
S.
, 2007, “
Iron Oxide Particle-Enhanced MRI Suggests Variability of Brain Inflammation at Early Stages After Ischemic Stroke
,”
Stroke
0039-2499,
38
, pp.
2733
2737
.
20.
Berger
,
C.
,
Hiestand
,
P.
,
Kindler-Baumann
,
D.
,
Rudin
,
M.
, and
Rausch
,
M.
, 2006, “
Analysis of Lesion Development During Acute Inflammation and Remission in a Rat Model of Experimental Autoimmune Encephalomyelitis by Visualization of Macrophage Infiltration, Demyelination and Blood-Brain Barrier Damage
,”
NMR Biomed.
0952-3480,
19
, pp.
101
107
.
21.
Dunning
,
M. D.
,
Kettunen
,
M. I.
,
Constant
,
C. F.
,
Franklin
,
R. J. M.
, and
Brindle
,
K. M.
, 2006, “
Magnetic Resonance Imaging of Functional Schwann Cell Transplants Labelled With Magnetic Microspheres
,”
Neuroimage
1053-8119,
31
, pp.
172
180
.
22.
Frank
,
J.
,
Miller
,
B.
,
Arbab
,
A.
,
Zywicke
,
H.
,
Jordan
,
E.
,
Lewis
,
B.
,
Bryant
,
L.
, and
Bulte
,
J.
, 2003, “
Clinically Applicable Labeling of Mammalian and Stem Cells by Combining Superparamagnetic Iron Oxides and Transfection Agents
,”
Radiology
0033-8419,
228
, pp.
480
487
.
23.
Veiseh
,
O.
,
Sun
,
C.
,
Gunn
,
J.
,
Kohler
,
N.
,
Gabikian
,
P.
,
Lee
,
D.
,
Bhattarai
,
N.
,
Ellenbogen
,
R.
,
Sze
,
R.
, and
Hallahan
,
A.
, 2005, “
Optical and MRI Multifunctional Nanoprobe for Targeting Gliomas
,”
Nano Lett.
1530-6984,
5
, pp.
1003
1008
.
24.
Reddy
,
G.
,
Bhojani
,
M.
,
McConville
,
P.
,
Moody
,
J.
,
Moffat
,
B.
,
Hall
,
D.
,
Kim
,
G.
,
Koo
,
Y.
,
Woolliscroft
,
M.
, and
Sugai
,
J.
, 2006, “
Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors
,”
Clin. Cancer Res.
1078-0432,
12
, pp.
6677
6686
.
25.
Durr
,
N.
,
Larson
,
T.
,
Smith
,
D.
,
Korgel
,
B.
,
Sokolov
,
K.
, and
Ben-Yakar
,
A.
, 2007, “
Two-Photon Luminescence Imaging of Cancer Cells Using Molecularly Targeted Gold Nanorods
,”
Nano Lett.
1530-6984,
7
, pp.
941
945
.
26.
Dulkeith
,
E.
,
Niedereichholz
,
T.
,
Klar
,
T.
,
Feldmann
,
J.
,
Von Plessen
,
G.
,
Gittins
,
D.
,
Mayya
,
K.
, and
Caruso
,
F.
, 2004, “
Plasmon Emission in Photoexcited Gold Nanoparticles
,”
Phys. Rev. B
0556-2805,
70
, p.
205424
.
27.
Wu
,
X.
,
Ming
,
T.
,
Wang
,
X.
,
Wang
,
P. N.
,
Wang
,
J. F.
, and
Chen
,
J. Y.
, 2010, “
High-Photoluminescence-Yield Gold Nanocubes: For Cell Imaging and Photothermal Therapy
,”
ACS Nano
1936-0851,
4
, pp.
113
120
.
28.
Huang
,
X. H.
,
Neretina
,
S.
, and
El-Sayed
,
M. A.
, 2009, “
Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications
,”
Adv. Mater.
0935-9648,
21
, pp.
4880
4910
.
29.
Abrams
,
M.
, and
Murrer
,
B.
, 1993, “
Metal Compounds in Therapy and Diagnosis
,”
Science
0036-8075,
261
, pp.
725
730
.
30.
Fatouros
,
P.
,
Corwin
,
F.
,
Chen
,
Z.
,
Broaddus
,
W.
,
Tatum
,
J.
,
Kettenmann
,
B.
,
Ge
,
Z.
,
Gibson
,
H.
,
Russ
,
J.
, and
Leonard
,
A.
, 2006, “
In Vitro and In Vivo Imaging Studies of a New Endohedral Metallofullerene Nanoparticle
,”
Radiology
0033-8419,
240
, pp.
756
764
.
31.
Bolskar
,
R. D.
,
Benedetto
,
A. F.
,
Husebo
,
L. O.
,
Price
,
R. E.
,
Jackson
,
E. F.
,
Wallace
,
S.
,
Wilson
,
L. J.
, and
Alford
,
J. M.
, 2003, “
First Soluble M@C-60 Derivatives Provide Enhanced Access to Metallofullerenes and Permit In Vivo Evaluation of Gd@C-60[C(Cooh)(2)](10) as a MRI Contrast Agent
,”
J. Am. Chem. Soc.
0002-7863,
125
, pp.
5471
5478
.
32.
Mikawa
,
M.
,
Kato
,
H.
,
Okumura
,
M.
,
Narazaki
,
M.
,
Kanazawa
,
Y.
,
Miwa
,
N.
, and
Shinohara
,
H.
, 2001, “
Paramagnetic Water-Soluble Metallofullerenes Having the Highest Relaxivity for MRI Contrast Agents
,”
Bioconjugate Chem.
1043-1802,
12
, pp.
510
514
.
33.
Kato
,
H.
,
Yashiro
,
A.
,
Mizuno
,
A.
,
Nishida
,
Y.
,
Kobayashi
,
K.
, and
Shinohara
,
H.
, 2001, “
Syntheses and Biological Evaluations of Alpha-D-Mannosyl [60] Fullerenols
,”
Bioorg. Med. Chem. Lett.
0960-894X,
11
, pp.
2935
2939
.
34.
Tóth
,
E.
,
Bolskar
,
R.
,
Borel
,
A.
,
Gonzalez
,
G.
,
Helm
,
L.
,
Merbach
,
A.
,
Sitharaman
,
B.
, and
Wilson
,
L.
, 2005, “
Water-Soluble Gadofullerenes: Toward High-Relaxivity, pH-Responsive MRI Contrast Agents
,”
J. Am. Chem. Soc.
0002-7863,
127
, pp.
799
805
.
35.
Zhang
,
J. F.
,
Fatouros
,
P. P.
,
Shu
,
C. Y.
,
Reid
,
J.
,
Owens
,
L. S.
,
Cai
,
T.
,
Gibson
,
H. W.
,
Long
,
G. L.
,
Corwin
,
F. D.
,
Chen
,
Z. J.
, and
Dorn
,
H. C.
, 2010, “
High Relaxivity Trimetallic Nitride (Gd3n) Metallofullerene MRI Contrast Agents With Optimized Functionality
,”
Bioconjugate Chem.
1043-1802,
21
, pp.
610
615
.
36.
Tang
,
W.
,
Xu
,
H.
,
Park
,
E.
,
Philbert
,
M.
, and
Kopelman
,
R.
, 2008, “
Encapsulation of Methylene Blue in Polyacrylamide Nanoparticle Platforms Protects Its Photodynamic Effectiveness
,”
Biochem. Biophys. Res. Commun.
0006-291X,
369
, pp.
579
583
.
37.
Orringer
,
D.
,
Koo
,
Y.
,
Fan
,
W.
,
Sagher
,
O.
, and
Kopelman
,
R.
, 2007, “
Nanoparticle-Enabled Glioma Cell Staining In Vitro
,”
Conference of Neurological Surgeons Meeting
, San Diego, CA.
38.
Orringer
,
D.
,
Koo
,
Y.
,
Chen
,
T.
,
Kopelman
,
R.
,
Sagher
,
O.
, and
Philbert
,
M.
, 2009, “
Small Solutions for Big Problems: The Application of Nanoparticles to Brain Tumor Diagnosis and Therapy
,”
Clin. Pharmacol. Ther.
0009-9236,
85
, pp.
531
534
.
39.
Jordan
,
A.
,
Scholz
,
R.
,
Maier-Hauff
,
K.
,
Van Landeghem
,
F.
,
Waldoefner
,
N.
,
Teichgraeber
,
U.
,
Pinkernelle
,
J.
,
Bruhn
,
H.
,
Neumann
,
F.
, and
Thiesen
,
B.
, 2006, “
The Effect of Thermotherapy Using Magnetic Nanoparticles on Rat Malignant Glioma
,”
J. Neuro-Oncol.
0167-594X,
78
, pp.
7
14
.
40.
Maier-Hauff
,
K.
,
Rothe
,
R.
,
Scholz
,
R.
,
Gneveckow
,
U.
,
Wust
,
P.
,
Thiesen
,
B.
,
Feussner
,
A.
,
Von Deimling
,
A.
,
Waldoefner
,
N.
, and
Felix
,
R.
, 2006, “
Intracranial Thermotherapy Using Magnetic Nanoparticles Combined With External Beam Radiotherapy: Results of a Feasibility Study on Patients With Glioblastoma Multiforme
,”
J. Neuro-Oncol.
0167-594X,
81
, pp.
53
60
.
41.
van Landeghem
,
F.
,
Maier-Hauff
,
K.
,
Jordan
,
A.
,
Hoffmann
,
K.
,
Gneveckow
,
U.
,
Scholz
,
R.
,
Thiesen
,
B.
,
Brück
,
W.
, and
Von Deimling
,
A.
, 2009, “
Post-Mortem Studies in Glioblastoma Patients Treated With Thermotherapy Using Magnetic Nanoparticles
,”
Biomaterials
0142-9612,
30
, pp.
52
57
.
42.
Cheng
,
F. Y.
,
Chen
,
C. T.
, and
Yeh
,
C. S.
, 2009, “
Comparative Efficiencies of Photothermal Destruction of Malignant Cells Using Antibody-Coated Silica@Au Nanoshells, Hollow Au/Ag Nanospheres and Au Nanorods
,”
Nanotechnology
0957-4484,
20
, p.
425104
.
43.
Tong
,
L.
,
Zhao
,
Y.
,
Huff
,
T.
,
Hansen
,
M.
,
Wei
,
A.
, and
Cheng
,
J.
, 2007, “
Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity
,”
Adv. Mater.
0935-9648,
19
, pp.
3136
3141
.
44.
Csaki
,
A.
,
Garwe
,
F.
,
Steinbrück
,
A.
,
Maubach
,
G.
,
Festag
,
G.
,
Weise
,
A.
,
Riemann
,
I.
,
König
,
K.
, and
Fritzsche
,
W.
, 2007, “
A Parallel Approach for Subwavelength Molecular Surgery Using Gene-Specific Positioned Metal Nanoparticles as Laser Light Antennas
,”
Nano Lett.
1530-6984,
7
, pp.
247
253
.
45.
Huang
,
X. H.
,
El-Sayed
,
I. H.
,
Qian
,
W.
, and
El-Sayed
,
M. A.
, 2006, “
Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods
,”
J. Am. Chem. Soc.
0002-7863,
128
, pp.
2115
2120
.
46.
Dickerson
,
E.
,
Dreaden
,
E.
,
Huang
,
X.
,
El-Sayed
,
I.
,
Chu
,
H.
,
Pushpanketh
,
S.
,
McDonald
,
J.
, and
El-Sayed
,
M.
, 2008, “
Gold Nanorod Assisted Near-Infrared Plasmonic Photothermal Therapy (PPTT) of Squamous Cell Carcinoma in Mice
,”
Cancer Lett.
0304-3835,
269
, pp.
57
66
.
47.
Dugan
,
L.
,
Gabrielsen
,
J.
,
Yu
,
S.
,
Lin
,
T.
, and
Choi
,
D.
, 1996, “
Buckminsterfullerenol Free Radical Scavengers Reduce Excitotoxic and Apoptotic Death of Cultured Cortical Neurons
,”
Neurobiol. Dis.
0969-9961,
3
, pp.
129
135
.
48.
Foran
,
E.
, and
Trotti
,
D.
, 2009, “
Glutamate Transporters and the Excitotoxic Path to Motor Neuron Degeneration in Amyotrophic Lateral Sclerosis
,”
Antioxidants & Redox Signaling
,
11
, pp.
1587
1602
.
49.
Piantadosi
,
C.
, and
Zhang
,
J.
, 1996, “
Mitochondrial Generation of Reactive Oxygen Species After Brain Ischemia in the Rat
,”
Stroke
0039-2499,
27
, pp.
327
332
.
50.
Pérez-Severiano
,
F.
,
Santamaria
,
A.
,
Pedraza-Chaverri
,
J.
,
Medina-Campos
,
O.
,
Rios
,
C.
, and
Segovia
,
J.
, 2004, “
Increased Formation of Reactive Oxygen Species, but No Changes in Glutathione Peroxidase Activity, in Striata of Mice Transgenic for the Huntington’s Disease Mutation
,”
Neurochem. Res.
0364-3190,
29
, pp.
729
733
.
51.
Liu
,
D.
,
Wen
,
J.
,
Liu
,
J.
, and
Li
,
L.
, 1999, “
The Roles of Free Radicals in Amyotrophic Lateral Sclerosis: Reactive Oxygen Species and Elevated Oxidation of Protein, DNA, and Membrane Phospholipids
,”
FASEB J.
0892-6638,
13
, pp.
2318
2328
.
52.
Gilgun-Sherki
,
Y.
,
Melamed
,
E.
, and
Offen
,
D.
, 2004, “
The Role of Oxidative Stress in the Pathogenesis of Multiple Sclerosis: The Need for Effective Antioxidant Therapy
,”
J. Neurol.
0340-5354,
251
, pp.
261
268
.
53.
Osuna
,
S.
,
Swart
,
M.
, and
Sola
,
M.
, 2010, “
On the Mechanism of Action of Fullerene Derivatives in Superoxide Dismutation
,”
Chemistry (Weinheim, Ger.)
0947-6539,
16
, pp.
3207
3214
.
54.
Yin
,
J. J.
,
Lao
,
F.
,
Fu
,
P. P.
,
Wamer
,
W. G.
,
Zhao
,
Y. L.
,
Wang
,
P. C.
,
Qiu
,
Y.
,
Sun
,
B. Y.
,
Xing
,
G. M.
,
Dong
,
J. Q.
,
Liang
,
X. J.
, and
Chen
,
C. Y.
, 2009, “
The Scavenging of Reactive Oxygen Species and the Potential for Cell Protection by Functionalized Fullerene Materials
,”
Biomaterials
0142-9612,
30
, pp.
611
621
.
55.
Kim
,
Y. O.
,
Kim
,
H. J.
,
Kim
,
S. K.
, and
Yoon
,
B.
, 2008, “
Neuroprotective Effects of Hydroxyfullerene in Rats Subjected to Global Cerebral Ischemia
,”
Molecular and Cellular Toxicology
1738-642X,
4
, pp.
218
223
.
56.
Wang
,
Y. H.
,
Lee
,
E. J.
,
Wu
,
C. M.
,
Luh
,
T. Y.
,
Chou
,
C. K.
, and
Lei
,
H. Y.
, 2004, “
Inhibition of Middle Cerebral Artery Occlusion-Induced Focal Cerebral Ischernia by Carboxyfullerene
,”
Journal of Drug Delivery Science and Technology
1773-2247,
14
, pp.
45
49
.
57.
Groom
,
A.
,
Smith
,
T.
, and
Turski
,
L.
, 2003, “
Multiple Sclerosis and Glutamate
,”
Ann. N.Y. Acad. Sci.
0077-8923,
993
, pp.
229
275
.
58.
Basso
,
A. S.
,
Frenkel
,
D.
,
Quintana
,
F. J.
,
Costa-Pinto
,
F. A.
,
Petrovic-Stojkovic
,
S.
,
Puckett
,
L.
,
Monsonego
,
A.
,
Bar-Shir
,
A.
,
Engel
,
Y.
,
Gozin
,
M.
, and
Weiner
,
H. L.
, 2008, “
Reversal of Axonal Loss and Disability in a Mouse Model of Progressive Multiple Sclerosis
,”
J. Clin. Invest.
0021-9738,
118
, pp.
1532
1543
.
59.
Rosen
,
D.
,
Siddique
,
T.
,
Patterson
,
D.
,
Figlewicz
,
D.
,
Sapp
,
P.
,
Hentati
,
A.
,
Donaldson
,
D.
,
Goto
,
J.
,
O'Regan
,
J.
,
Deng
,
H.
,
Mulder
,
D.
,
Smyth
,
C.
,
Laing
,
N.
,
Soriano
,
E.
,
Pericak-Vance
,
M.
,
Haines
,
J.
,
Rouleau
,
G.
,
Gusella
,
J.
,
Horvitz
,
H.
, and
Brown
,
R.
, 1993, “
Mutations in Cu/Zn Superoxide Dismutase Gene Are Associated With Familial Amyotrophic Lateral Sclerosis
,”
Nature (London)
0028-0836,
362
, pp.
59
62
.
60.
Barber
,
S.
,
Mead
,
R.
, and
Shaw
,
P.
, 2006, “
Oxidative Stress in ALS: A Mechanism of Neurodegeneration and a Therapeutic Target
,”
Biochim. Biophys. Acta
0006-3002,
1762
, pp.
1051
1067
.
61.
Dugan
,
L.
,
Turetsky
,
D.
,
Du
,
C.
,
Lobner
,
D.
,
Wheeler
,
M.
,
Almli
,
C.
,
Shen
,
C.
,
Luh
,
T.
,
Choi
,
D.
, and
Lin
,
T.
, 1997, “
Carboxyfullerenes as Neuroprotective Agents
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
94
, pp.
9434
9439
.
62.
Lin
,
A. M. Y.
,
Chyi
,
B. Y.
,
Wang
,
S. D.
,
Yu
,
H. H.
,
Kanakamma
,
P. P.
,
Luh
,
T. Y.
,
Chou
,
C. K.
, and
Ho
,
L. T.
, 1999, “
Carboxyfullerene Prevents Iron-Induced Oxidative Stress in Rat Brain
,”
J. Neurochem.
0022-3042,
72
, pp.
1634
1640
.
63.
Smith
,
M.
,
Sayre
,
L.
,
Monnier
,
V.
, and
Perry
,
G.
, 1995, “
Radical Ageing in Alzheimer’s Disease
,”
Trends Neurosci.
0166-2236,
18
, pp.
172
176
.
64.
Perry
,
G.
,
Castellani
,
R.
,
Hirai
,
K.
, and
Smith
,
M.
, 1998, “
Reactive Oxygen Species Mediate Cellular Damage in Alzheimer Disease
,”
Journal of Alzheimer's Disease
1387-2877,
1
, pp.
45
55
.
65.
Markesbery
,
W.
, 1997, “
Oxidative Stress Hypothesis in Alzheimer's Disease
,”
J. Free Radic Biol. Med.
0748-5514,
23
, pp.
134
147
.
66.
Sayre
,
L.
,
Perry
,
G.
, and
Smith
,
M.
, 1999, “
Redox Metals and Neurodegenerative Disease
,”
Curr. Opin. Chem. Biol.
1367-5931,
3
, pp.
220
225
.
67.
Sayre
,
L.
,
Perry
,
G.
,
Harris
,
P.
,
Liu
,
Y.
,
Schubert
,
K.
, and
Smith
,
M.
, 2000, “
In Situ Oxidative Catalysis by Neurofibrillary Tangles and Senile Plaques in Alzheimer’s Disease
,”
J. Neurochem.
0022-3042,
74
, pp.
270
279
.
68.
Lovell
,
M.
,
Robertson
,
J.
,
Teesdale
,
W.
,
Campbell
,
J.
, and
Markesbery
,
W.
, 1998, “
Copper, Iron and Zinc in Alzheimer’s Disease Senile Plaques
,”
J. Neurol. Sci.
0022-510X,
158
, pp.
47
52
.
69.
Podolski
,
I. Y.
,
Podlubnaya
,
Z. A.
,
Kosenko
,
E. A.
,
Mugantseva
,
E. A.
,
Makarova
,
E. G.
,
Marsagishvili
,
L. G.
,
Shpagina
,
M. D.
,
Kaminsky
,
Y. G.
,
Andrievsky
,
G. V.
, and
Klochkov
,
V. K.
, 2007, “
Effects of Hydrated Forms of C-60 Fullerene on Amyloid Beta-Peptide Fibrillization In Vitro and Performance of the Cognitive Task
,”
J. Nanosci. Nanotechnol.
1533-4880,
7
, pp.
1479
1485
.
70.
Kim
,
J. E.
, and
Lee
,
M.
, 2003, “
Fullerene Inhibits Beta-Amyloid Peptide Aggregation
,”
Biochem. Biophys. Res. Commun.
0006-291X,
303
, pp.
576
579
.
71.
Harhaji
,
L.
,
Isakovic
,
A.
,
Vucicevic
,
L.
,
Janjetovic
,
K.
,
Misirkic
,
M.
,
Markovic
,
Z.
,
Todorovic-Markovie
,
B.
,
Nikolic
,
N.
,
Vranjes-Djuric
,
S.
,
Nikolic
,
Z.
, and
Trajkovic
,
V.
, 2008, “
Modulation of Tumor Necrosis Factor-Mediated Cell Death by Fullerenes
,”
Pharm. Res.
0724-8741,
25
, pp.
1365
1376
.
72.
Tykhomyrov
,
A. A.
,
Nedzvetsky
,
V. S.
,
Klochkov
,
V. K.
, and
Andrievsky
,
G. V.
, 2008, “
Nanostructures of Hydrated C-60 Fullerene (C(60)Hyfn) Protect Rat Brain Against Alcohol Impact and Attenuate Behavioral Impairments of Alcoholized Animals
,”
Toxicology
0300-483X,
246
, pp.
158
165
.
73.
Miguel-Hidalgo
,
J.
, and
Rajkowska
,
G.
, 2003, “
Comparison of Prefrontal Cell Pathology Between Depression and Alcohol Dependence
,”
J. Psychiatr. Res.
0022-3956,
37
, pp.
411
420
.
74.
Mori
,
T.
,
Ito
,
S.
,
Namiki
,
M.
,
Suzuki
,
T.
,
Kobayashi
,
S.
,
Matsubayashi
,
K.
, and
Sawaguchi
,
T.
, 2007, “
Involvement of Free Radicals Followed by the Activation of Phospholipase A(2) in the Mechanism That Underlies the Combined Effects of Methamphetamine and Morphine on Subacute Toxicity or Lethality in Mice: Comparison of the Therapeutic Potential of Fullerene, Mepacrine, and Cooling
,”
Toxicology
0300-483X,
236
, pp.
149
157
.
75.
Mori
,
T.
,
Ito
,
S.
,
Matsubayashi
,
K.
, and
Sawaguchi
,
T.
, 2007, “
Comparison of Nitric Oxide Synthase Inhibitors, Phospholipase A2 Inhibitor and Free Radical Scavengers as Attenuators of Opioid Withdrawal Syndrome
,”
Behav. Pharmacol.
0955-8810,
18
, pp.
725
729
.
76.
Sathornsumetee
,
S.
,
Reardon
,
D.
,
Desjardins
,
A.
,
Quinn
,
J.
,
Vredenburgh
,
J.
, and
Rich
,
J.
, 2007, “
Molecularly Targeted Therapy for Malignant Glioma
,”
Cancer
0008-543X,
110
, pp.
13
24
.
77.
Brioschi
,
A.
,
Zenga
,
F.
,
Zara
,
G.
,
Gasco
,
M.
,
Ducati
,
A.
, and
Mauro
,
A.
, 2007, “
Solid Lipid Nanoparticles: Could They Help to Improve the Efficacy of Pharmacologic Treatments for Brain Tumors?
,”
Neurol. Res.
0160-6412,
29
, pp.
324
330
.
78.
Müller
,
R.
,
Mäder
,
K.
, and
Gohla
,
S.
, 2000, “
Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery—A Review of the State of the Art
,”
Eur. J. Pharm. Biopharm.
0939-6411,
50
, pp.
161
177
.
79.
Wissing
,
S.
,
Kayser
,
O.
, and
Müller
,
R.
, 2004, “
Solid Lipid Nanoparticles for Parenteral Drug Delivery
,”
Adv. Drug Delivery Rev.
0169-409X,
56
, pp.
1257
1272
.
80.
Nagayama
,
S.
,
Ogawara
,
K.
,
Fukuoka
,
Y.
,
Higaki
,
K.
, and
Kimura
,
T.
, 2007, “
Time-Dependent Changes in Opsonin Amount Associated on Nanoparticles Alter Their Hepatic Uptake Characteristics
,”
Int. J. Pharm.
0378-5173,
342
, pp.
215
221
.
81.
Date
,
A.
,
Joshi
,
M.
, and
Patravale
,
V.
, 2007, “
Parasitic Diseases: Liposomes and Polymeric Nanoparticles Versus Lipid Nanoparticles
,”
Adv. Drug Delivery Rev.
0169-409X,
59
, pp.
505
521
.
82.
Vitols
,
S.
,
Angelin
,
B.
,
Ericsson
,
S.
,
Gahrton
,
G.
,
Juliusson
,
G.
,
Masquelier
,
M.
,
Paul
,
C.
,
Peterson
,
C.
,
Rudling
,
M.
,
Soderbergreid
,
K.
, and
Tidefelt
,
U.
, 1990, “
Uptake of Low Density Lipoproteins by Human Lukemic Cells In Vivo: Relation to Plasma Lipoprotein Levels and Possible Relevance for Selective Chemotherapy
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
87
, pp.
2598
2602
.
83.
Nikanjam
,
M.
,
Gibbs
,
A.
,
Hunt
,
C.
,
Budinger
,
T.
, and
Forte
,
T.
, 2007, “
Synthetic Nano-LDL With Paclitaxel Oleate as a Targeted Drug Delivery Vehicle for Glioblastoma Multiforme
,”
J. Controlled Release
0168-3659,
124
, pp.
163
171
.
84.
Lacko
,
A. G.
,
Nair
,
M.
,
Paranjape
,
S.
,
Johnson
,
S.
, and
McConathy
,
W. J.
, 2002, “
High Density Lipoprotein Complexes as Delivery Vehicles for Anticancer Drugs
,”
Anticancer Res.
0250-7005,
22
, pp.
2045
2049
.
85.
Fabel
,
K.
,
Dietrich
,
J.
,
Hau
,
P.
,
Wismeth
,
C.
,
Winner
,
B.
,
Przywara
,
S.
,
Steinbrecher
,
A.
,
Ullrich
,
W.
, and
Bogdahn
,
U.
, 2001, “
Long-Term Stabilization in Patients With Malignant Glioma After Treatment With Liposomal Doxorubicin
,”
Cancer
0008-543X,
92
, pp.
1936
1942
.
86.
Hau
,
P.
,
Fabel
,
K.
,
Baumgart
,
U.
,
Rümmele
,
P.
,
Grauer
,
O.
,
Bock
,
A.
,
Dietmaier
,
C.
,
Dietmaier
,
W.
,
Dietrich
,
J.
,
Dudel
,
C.
,
Hübner
,
F.
,
Jauch
,
T.
,
Drechsel
,
E.
,
Kleiter
,
I.
,
Wismeth
,
C.
,
Zellner
,
A.
,
Brawanski
,
A.
,
Steinbrecher
,
A.
,
Marienhagen
,
J.
, and
Bogdahn
,
U.
, 2004, “
Pegylated Liposomal Doxorubicin—Efficacy in Patients With Recurrent High-Grade Glioma
,”
Cancer
0008-543X,
100
, pp.
1199
1207
.
87.
Vogelbaum
,
M.
, 2005, “
Convection Enhanced Delivery for the Treatment of Malignant Gliomas: Symposium Review
,”
J. Neuro-Oncol.
0167-594X,
73
, pp.
57
69
.
88.
Saito
,
R.
,
Krauze
,
M.
,
Noble
,
C.
,
Drummond
,
D.
,
Kirpotin
,
D.
,
Berger
,
M.
,
Park
,
J.
, and
Bankiewicz
,
K.
, 2006, “
Convection-Enhanced Delivery of Ls-TPT Enables an Effective, Continuous, Low-Dose Chemotherapy Against Malignant Glioma Xenograft Model
,”
J. Neuro-Oncol.
0167-594X,
8
, pp.
205
214
.
89.
Noble
,
C.
,
Krauze
,
M.
,
Drummond
,
D.
,
Yamashita
,
Y.
,
Saito
,
R.
,
Berger
,
M.
,
Kirpotin
,
D.
,
Bankiewicz
,
K.
, and
Park
,
J.
, 2006, “
Novel Nanoliposomal CPT-11 Infused by Convection-Enhanced Delivery in Intracranial Tumors: Pharmacology and Efficacy
,”
Cancer Res.
0008-5472,
66
, pp.
2801
2806
.
90.
Madhankumar
,
A.
,
Slagle-Webb
,
B.
,
Mintz
,
A.
,
Sheehan
,
J.
, and
Connor
,
J.
, 2006, “
Interleukin-13 Receptor-Targeted Nanovesicles Are a Potential Therapy for Glioblastoma Multiforme
,”
Mol. Cancer Ther.
,
5
, pp.
3162
3169
.
91.
Steiniger
,
S.
,
Kreuter
,
J.
,
Khalansky
,
A.
,
Skidan
,
I.
,
Bobruskin
,
A.
,
Smirnova
,
Z.
,
Severin
,
S.
,
Uhl
,
R.
,
Kock
,
M.
, and
Geiger
,
K.
, 2004, “
Chemotherapy of Glioblastoma in Rats Using Doxorubicin-Loaded Nanoparticles
,”
Int. J. Cancer
0020-7136,
109
, pp.
759
767
.
92.
Sanchez De Juan
,
B.
,
Von Briesen
,
H.
,
Gelperina
,
S.
, and
Kreuter
,
J.
, 2006, “
Cytotoxicity of Doxorubicin Bound to Poly (Butyl Cyanoacrylate) Nanoparticles in Rat Glioma Cell Lines Using Different Assays
,”
J. Drug Target.
1061-186X,
14
, pp.
614
622
.
93.
Hu
,
Y.
,
Jarillon
,
S.
,
Dubernet
,
C.
,
Couvreur
,
P.
, and
Robert
,
J.
, 1996, “
On the Mechanism of Action of Doxorubicin Encapsulation in Nanospheres for the Reversal of Multidrug Resistance
,”
Cancer Chemother. Pharmacol.
0344-5704,
37
, pp.
556
560
.
94.
Cahan
,
M.
,
Walter
,
K.
,
Colvin
,
O.
, and
Brem
,
H.
, 1994, “
Cytotoxicity of Taxol In Vitro Against Human and Rat Malignant Brain Tumors
,”
Cancer Chemother. Pharmacol.
0344-5704,
33
, pp.
441
444
.
95.
Hennenfent
,
K.
, and
Govindan
,
R.
, 2006, “
Novel Formulations of Taxanes: A Review. Old Wine in a New Bottle?
,”
Ann. Oncol.
0923-7534,
17
, pp.
735
749
.
96.
Dong
,
Y.
, and
Feng
,
S.
, 2007, “
Poly (D, L-Lactide-Co-Glycolide)(PLGA) Nanoparticles Prepared by High Pressure Homogenization for Paclitaxel Chemotherapy
,”
Int. J. Pharm.
0378-5173,
342
, pp.
208
214
.
97.
Patil
,
Y. B.
,
Swaminathan
,
S. K.
,
Sadhukha
,
T.
,
Ma
,
L. A.
, and
Panyam
,
J.
, 2010, “
The Use of Nanoparticle-Mediated Targeted Gene Silencing and Drug Delivery to Overcome Tumor Drug Resistance
,”
Biomaterials
0142-9612,
31
, pp.
358
365
.
98.
Vijayaraghavalu
,
S.
,
Raghavan
,
D.
, and
Labhasetwar
,
V.
, 2007, “
Nanoparticles for Delivery of Chemotherapeutic Agents to Tumors
,”
Current Opinion in Investigational Drugs
2040-3429,
8
, pp.
477
484
.
99.
Tyner
,
K.
,
Schiffman
,
S.
, and
Giannelis
,
E.
, 2004, “
Nanobiohybrids as Delivery Vehicles for Camptothecin
,”
J. Controlled Release
0168-3659,
95
, pp.
501
514
.
100.
Silva
,
G.
,
Czeisler
,
C.
,
Niece
,
K.
,
Beniash
,
E.
,
Harrington
,
D.
,
Kessler
,
J.
, and
Stupp
,
S.
, 2004, “
Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers
,”
Science
0036-8075,
303
, pp.
1352
1355
.
101.
Webber
,
M. J.
,
Kessler
,
J. A.
, and
Stupp
,
S. I.
, 2010, “
Emerging Peptide Nanomedicine to Regenerate Tissues and Organs
,”
J. Intern. Med.
,
267
, pp.
71
88
.
102.
Tysseling-Mattiace
,
V.
,
Sahni
,
V.
,
Niece
,
K.
,
Birch
,
D.
,
Czeisler
,
C.
,
Fehlings
,
M.
,
Stupp
,
S.
, and
Kessler
,
J.
, 2008, “
Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation After Spinal Cord Injury
,”
J. Neurosci.
0270-6474,
28
, pp.
3814
3823
.
103.
Collins
,
K.
,
Lehmann
,
E.
, and
Patil
,
P.
, 2010, “
Deep Brain Stimulation for Movement Disorders
,”
Neurobiol. Dis.
0969-9961,
38
, pp.
338
345
.
104.
McCreery
,
D.
,
Yuen
,
T.
, and
Bullara
,
L.
, 2000, “
Chronic Microstimulation in the Feline Ventral Cochlear Nucleus: Physiologic and Histologic Effects
,”
Hear. Res.
0378-5955,
149
, pp.
223
238
.
105.
Schmidt
,
E.
,
Bak
,
M.
,
Hambrecht
,
F.
,
Kufta
,
C.
,
O'Rourke
,
D.
, and
Vallabhanath
,
P.
, 1996, “
Feasibility of a Visual Prosthesis for the Blind Based on Intracortical Micro Stimulation of the Visual Cortex
,”
Brain
0006-8950,
119
, pp.
507
522
.
106.
Nicolelis
,
M.
, 2002, “
The Amazing Adventures of Robotrat
,”
Trends Cogn. Sci.
1364-6613,
6
, pp.
449
450
.
107.
Jezernik
,
S.
,
Craggs
,
M.
,
Grill
,
W.
,
Creasey
,
G.
, and
Rijkhoff
,
N.
, 2002, “
Electrical Stimulation for the Treatment of Bladder Dysfunction: Current Status and Future Possibilities
,”
Neurol. Res.
0160-6412,
24
, pp.
413
430
.
108.
Agnew
,
W.
,
Yuen
,
T.
,
McCreery
,
D.
, and
Bullara
,
L.
, 1986, “
Histopathologic Evaluation of Prolonged Intracortical Electrical Stimulation
,”
Exp. Neurol.
0014-4886,
92
, pp.
162
185
.
109.
Rose
,
T.
, and
Robblee
,
L.
, 1990, “
Electrical Stimulation With Pt Electrodes. VIII. Electrochemically Safe Charge Injection Limits With 0.2 ms Pulses
,”
IEEE Trans. Biomed. Eng.
0018-9294,
37
, pp.
1118
1120
.
110.
Cogan
,
S.
,
Guzelian
,
A.
,
Agnew
,
W.
,
Yuen
,
T.
, and
McCreery
,
D.
, 2004, “
Over-Pulsing Degrades Activated Iridium Oxide Films Used for Intracortical Neural Stimulation
,”
J. Neurosci. Methods
0165-0270,
137
, pp.
141
150
.
111.
McCreery
,
D.
,
Yuen
,
T.
,
Agnew
,
W.
, and
Bullara
,
L.
, 1997, “
A Characterization of the Effects on Neuronal Excitability Due to Prolonged Microstimulation With Chronically Implanted Microelectrodes
,”
IEEE Trans. Biomed. Eng.
0018-9294,
44
, pp.
931
939
.
112.
He
,
W.
,
McConnell
,
G.
, and
Bellamkonda
,
R.
, 2006, “
Nanoscale Laminin Coating Modulates Cortical Scarring Response
,”
J. Neural Eng.
1741-2560,
3
, pp.
316
326
.
113.
Sinani
,
V.
,
Koktysh
,
D.
,
Yun
,
B.
,
Matts
,
R.
,
Pappas
,
T.
,
Motamedi
,
M.
,
Thomas
,
S.
, and
Kotov
,
N.
, 2003, “
Collagen Coating Promotes Biocompatibility of Semiconductor Nanoparticles in Stratified LBL Films
,”
Nano Lett.
1530-6984,
3
, pp.
1177
1182
.
114.
He
,
W.
, and
Bellamkonda
,
R.
, 2005, “
Nanoscale Neuro-Integrative Coatings for Neural Implants
,”
Biomaterials
0142-9612,
26
, pp.
2983
2990
.
115.
Yang
,
W.
,
Thordarson
,
P.
,
Gooding
,
J.
,
Ringer
,
S.
, and
Braet
,
F.
, 2007, “
Carbon Nanotubes for Biological and Biomedical Applications
,”
Nanotechnology
0957-4484,
18
, p.
412001
.
116.
Falvo
,
M.
,
Clary
,
G.
,
Taylor
,
R.
,
Chi
,
V.
,
Brooks
,
F.
,
Washburn
,
S.
, and
Superfine
,
R.
, 1997, “
Nanotubes Under Large Strain
,”
Nature (London)
0028-0836,
389
, pp.
583
584
.
117.
Nguyen-Vu
,
T.
,
Chen
,
H.
,
Cassell
,
A.
,
Andrews
,
R.
,
Meyyappan
,
M.
, and
Li
,
J.
, 2006, “
Vertically Aligned Carbon Nanofiber Arrays: An Advance Toward Electrical-Neural Interfaces
,”
Small
1613-6810,
2
, pp.
89
94
.
118.
Hu
,
H.
,
Ni
,
Y.
,
Mandal
,
S.
,
Montana
,
V.
,
Zhao
,
B.
,
Haddon
,
R.
, and
Parpura
,
V.
, 2005, “
Polyethyleneimine Functionalized Single-Walled Carbon Nanotubes as a Substrate for Neuronal Growth
,”
J. Phys. Chem.
0022-3654,
109
, pp.
4285
4289
.
119.
Mattson
,
M. P.
,
Haddon
,
R. C.
, and
Rao
,
A. M.
, 2000, “
Molecular Functionalization of Carbon Nanotubes and Use as Substrates for Neuronal Growth
,”
J. Mol. Neurosci.
0895-8696,
14
, pp.
175
182
.
120.
Lovat
,
V.
,
Pantarotto
,
D.
,
Lagostena
,
L.
,
Cacciari
,
B.
,
Grandolfo
,
M.
,
Righi
,
M.
,
Spalluto
,
G.
,
Prato
,
M.
, and
Ballerini
,
L.
, 2005, “
Carbon Nanotube Substrates Boost Neuronal Electrical Signaling
,”
Nano Lett.
1530-6984,
5
, pp.
1107
1110
.
121.
Mazzatenta
,
A.
,
Giugliano
,
M.
,
Campidelli
,
S.
,
Gambazzi
,
L.
,
Businaro
,
L.
,
Markram
,
H.
,
Prato
,
M.
, and
Ballerini
,
L.
, 2007, “
Interfacing Neurons With Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits
,”
J. Neurosci.
0270-6474,
27
, pp.
6931
6936
.
122.
Hu
,
H.
,
Ni
,
Y.
,
Montana
,
V.
,
Haddon
,
R.
, and
Parpura
,
V.
, 2004, “
Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth
,”
Nano Lett.
1530-6984,
4
, pp.
507
511
.
123.
Gabriel
,
G.
,
Gomez
,
R.
,
Bongard
,
M.
,
Benito
,
N.
,
Fernandez
,
E.
, and
Villa
,
R.
, 2009, “
Easily Made Single-Walled Carbon Nanotube Surface Microelectrodes for Neuronal Applications
,”
Biosens. Bioelectron.
0956-5663,
24
, pp.
1942
1948
.
124.
Keefer
,
E.
,
Botterman
,
B.
,
Romero
,
M.
,
Rossi
,
A.
, and
Gross
,
G.
, 2008, “
Carbon Nanotube Coating Improves Neuronal Recordings
,”
Nat. Nanotechnol.
1748-3387,
3
, pp.
434
439
.
125.
Wang
,
K.
,
Fishman
,
H.
,
Dai
,
H.
, and
Harris
,
J.
, 2006, “
Neural Stimulation With a Carbon Nanotube Microelectrode Array
,”
Nano Lett.
1530-6984,
6
, pp.
2043
2048
.
126.
de Asis
,
E. D.
,
Nguyen-Vu
,
T. D. B.
,
Arumugam
,
P. U.
,
Chen
,
H.
,
Cassell
,
A. M.
,
Andrews
,
R. J.
,
Yang
,
C. Y.
, and
Li
,
J.
, 2009, “
High Efficient Electrical Stimulation of Hippocampal Slices With Vertically Aligned Carbon Nanofiber Microbrush Array
,”
Biomed. Microdevices
1387-2176,
11
, pp.
801
808
.
127.
Yu
,
Z.
,
McKnight
,
T. E.
,
Ericson
,
M. N.
,
Melechko
,
A. V.
,
Simpson
,
M. L.
, and
Morrison
,
B.
, 2007, “
Vertically Aligned Carbon Nanofiber Arrays Record Electrophysiological Signals From Hippocampal Slices
,”
Nano Lett.
1530-6984,
7
, pp.
2188
2195
.
128.
Sauter-Starace
,
F.
,
Bibari
,
O.
,
Berger
,
F.
,
Caillat
,
P.
, and
Benabid
,
A. L.
, 2009, “
ECoG Recordings of a Non-Human Primate Using Carbon Nanotubes Electrodes on a Flexible Polyimide Implant
,”
Fourth International IEEE/EMBS Conference on Neural Engineering
, Antalya, Turkey, pp.
112
115
.
129.
Lewinski
,
N.
,
Colvin
,
V.
, and
Drezek
,
R.
, 2008, “
Cytotoxicity of Nanoparticles
,”
Small
1613-6810,
4
, pp.
26
49
.
130.
Gilchrist
,
R.
,
Medal
,
R.
,
Shorey
,
W.
,
Hanselman
,
R.
,
Parrott
,
J.
, and
Taylor
,
C.
, 1957, “
Selective Inductive Heating of Lymph Nodes
,”
Ann. Surg.
0003-4932,
146
, pp.
596
606
.
131.
Anzai
,
Y.
,
Piccoli
,
C.
,
Outwater
,
E.
,
Stanford
,
W.
,
Bluemke
,
D.
,
Nurenberg
,
P.
,
Saini
,
S.
,
Maravilla
,
K.
,
Feldman
,
D.
,
Schmiedl
,
U.
,
Brunberg
,
J.
,
Francis
,
I.
,
Harms
,
S.
,
Som
,
P.
, and
Tempany
,
C.
, 2003, “
Evaluation of Neck and Body Metastases to Nodes With Ferumoxtran 10-Enhanced MR Imaging: Phase III Safety and Efficacy Study
,”
Radiology
0033-8419,
228
, pp.
777
788
.
132.
Gupta
,
A.
, and
Gupta
,
M.
, 2005, “
Cytotoxicity Suppression and Cellular Uptake Enhancement of Surface Modified Magnetic Nanoparticles
,”
Biomaterials
0142-9612,
26
, pp.
1565
1573
.
133.
Takahashi
,
H.
,
Niidome
,
Y.
,
Niidome
,
T.
,
Kaneko
,
K.
,
Kawasaki
,
H.
, and
Yamada
,
S.
, 2006, “
Modification of Gold Nanorods Using Phosphatidylcholine to Reduce Cytotoxicity
,”
Langmuir
0743-7463,
22
, pp.
2
5
.
134.
Huff
,
T.
,
Hansen
,
M.
,
Zhao
,
Y.
,
Cheng
,
J.
, and
Wei
,
A.
, 2007, “
Controlling the Cellular Uptake of Gold Nanorods
,”
Langmuir
0743-7463,
23
, pp.
1596
1599
.
135.
Niidome
,
T.
,
Yamagata
,
M.
,
Okamoto
,
Y.
,
Akiyama
,
Y.
,
Takahashi
,
H.
,
Kawano
,
T.
,
Katayama
,
Y.
, and
Niidome
,
Y.
, 2006, “
PEG-Modified Gold Nanorods With a Stealth Character for In Vivo Applications
,”
J. Controlled Release
0168-3659,
114
, pp.
343
347
.
136.
Goodman
,
C.
,
McCusker
,
C.
,
Yilmaz
,
T.
, and
Rotello
,
V.
, 2004, “
Toxicity of Gold Nanoparticles Functionalized With Cationic and Anionic Side Chains
,”
Bioconjugate Chem.
1043-1802,
15
, pp.
897
900
.
137.
Connor
,
E.
,
Mwamuka
,
J.
,
Gole
,
A.
,
Murphy
,
C.
, and
Wyatt
,
M.
, 2005, “
Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity
,”
Small
1613-6810,
1
, pp.
325
327
.
138.
Shukla
,
R.
,
Bansal
,
V.
,
Chaudhary
,
M.
,
Basu
,
A.
,
Bhonde
,
R.
, and
Sastry
,
M.
, 2005, “
Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview
,”
Langmuir
0743-7463,
21
, pp.
10644
10654
.
139.
Murphy
,
C. J.
,
Gole
,
A. M.
,
Stone
,
J. W.
,
Sisco
,
P. N.
,
Alkilany
,
A. M.
,
Goldsmith
,
E. C.
, and
Baxter
,
S. C.
, 2008, “
Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging
,”
Acc. Chem. Res.
0001-4842,
41
, pp.
1721
1730
.
140.
Mironava
,
T.
,
Hadjiargyrou
,
M.
,
Simon
,
M.
,
Jurukovski
,
V.
, and
Rafailovich
,
M. H.
, 2010, “
Gold Nanoparticles Cellular Toxicity and Recovery: Effect of Size, Concentration and Exposure Time
,”
Nanotoxicology
,
4
, pp.
120
137
.
141.
Kolosnjaj
,
J.
,
Smarc
,
H.
, and
Moussa
,
F.
, 2007,
Bio-Applications of Nanoparticles
(
Toxicity Studies of Fullerenes and Derivatives
),
Springer-Verlag
,
Berlin
.
142.
Fiorito
,
S.
,
Serafino
,
A.
,
Andreola
,
F.
, and
Bernier
,
P.
, 2006, “
Effects of Fullerenes and Single-Wall Carbon Nanotubes on Murine and Human Macrophages
,”
Carbon
0008-6223,
44
, pp.
1100
1105
.
143.
Jia
,
G.
,
Wang
,
H.
,
Yan
,
L.
,
Wang
,
X.
,
Pei
,
R.
,
Yan
,
T.
,
Zhao
,
Y.
, and
Guo
,
X.
, 2005, “
Cytotoxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene
,”
Environ. Sci. Technol.
0013-936X,
39
, pp.
1378
1383
.
144.
Porter
,
A.
,
Muller
,
K.
,
Skepper
,
J.
,
Midgley
,
P.
, and
Welland
,
M.
, 2006, “
Uptake of C60 by Human Monocyte Macrophages, Its Localization and Implications for Toxicity: Studied by High Resolution Electron Microscopy and Electron Tomography
,”
Acta Biomater.
1742-7061,
2
, pp.
409
419
.
145.
Sayes
,
C.
,
Marchione
,
A.
,
Reed
,
K.
, and
Warheit
,
D.
, 2007, “
Comparative Pulmonary Toxicity Assessments of C60 Water Suspensions in Rats: Few Differences in Fullerene Toxicity In Vivo in Contrast to In Vitro Profiles
,”
Nano Lett.
1530-6984,
7
, pp.
2399
2406
.
146.
Solomadin
,
I. N.
,
Marov
,
N. V.
,
Venediktova
,
N. I.
,
Kosenko
,
E. A.
, and
Kaminsky
,
Y. G.
, 2008, “
Toxic Effect of a Beta(25-35) and Fullerene C-60 on Erythrocytes
,”
Biol. Bull.
0006-3185,
35
, pp.
436
440
.
147.
Wielgus
,
A. R.
,
Zhao
,
B.
,
Chignell
,
C. F.
,
Hu
,
D. N.
, and
Roberts
,
J. E.
, 2010, “
Phototoxicity and Cytotoxicity of Fullerol in Human Retinal Pigment Epithelial Cells
,”
Toxicol. Appl. Pharmacol.
0041-008X,
242
, pp.
79
90
.
148.
Kotov
,
N.
,
Winter
,
J.
,
Clements
,
I.
,
Jan
,
E.
,
Timko
,
B.
,
Campidelli
,
S.
,
Pathak
,
S.
,
Mazzatenta
,
A.
,
Lieber
,
C.
,
Prato
,
M.
,
Bellamkonda
,
R.
,
Silva
,
G.
,
Kam
,
N.
,
Patolsky
,
F.
, and
Ballerini
,
L.
, 2009, “
Nanomaterials for Neural Interfaces
,”
Adv. Mater.
0935-9648,
21
, pp.
3970
4004
.
149.
Murr
,
L.
,
Garza
,
K.
,
Soto
,
K.
,
Carrasco
,
A.
,
Powell
,
T.
,
Ramirez
,
D.
,
Guerrero
,
P.
,
Lopez
,
D.
, and
Venzor
,
J.
, 2005, “
Cytotoxicity Assessment of Some Carbon Nanotubes and Related Carbon Nanoparticle Aggregates and the Implications for Anthropogenic Carbon Nanotube Aggregates in the Environment
,”
Int. J. Environ. Res. Public Health
,
2
, pp.
31
42
.
150.
Manna
,
S.
,
Sarkar
,
S.
,
Barr
,
J.
,
Wise
,
K.
,
Barrera
,
E.
,
Jejelowo
,
O.
,
Rice-Ficht
,
A.
, and
Ramesh
,
G.
, 2005, “
Single-Walled Carbon Nanotube Induces Oxidative Stress and Activates Nuclear Transcription Factor-Kb in Human Keratinocytes
,”
Nano Lett.
1530-6984,
5
, pp.
1676
1684
.
151.
Cui
,
D.
,
Tian
,
F.
,
Ozkan
,
C.
,
Wang
,
M.
, and
Gao
,
H.
, 2005, “
Effect of Single Wall Carbon Nanotubes on Human Hek293 Cells
,”
Toxicol. Lett.
0378-4274,
155
, pp.
73
85
.
152.
Wick
,
P.
,
Manser
,
P.
,
Limbach
,
L.
,
Dettlaff-Weglikowska
,
U.
,
Krumeich
,
F.
,
Roth
,
S.
,
Stark
,
W.
, and
Bruinink
,
A.
, 2007, “
The Degree and Kind of Agglomeration Affect Carbon Nanotube Cytotoxicity
,”
Toxicol. Lett.
0378-4274,
168
, pp.
121
131
.
153.
Shvedova
,
A.
,
Castranova
,
V.
,
Kisin
,
E.
,
Schwegler-Berry
,
D.
,
Murray
,
A.
,
Gandelsman
,
V.
,
Maynard
,
A.
, and
Baron
,
P.
, 2003, “
Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells
,”
Journal of Toxicology and Environmental Health, Part A
,
66
, pp.
1909
1926
.
154.
Monteiro-Riviere
,
N.
, and
Inman
,
A.
, 2006, “
Challenges for Assessing Carbon Nanomaterial Toxicity to the Skin
,”
Carbon
0008-6223,
44
, pp.
1070
1078
.
155.
Sato
,
Y.
,
Yokoyama
,
A.
,
Shibata
,
K.
,
Akimoto
,
Y.
,
Ogino
,
S.
,
Nodasaka
,
Y.
,
Kohgo
,
T.
,
Tamura
,
K.
,
Akasaka
,
T.
, and
Uo
,
M.
, 2005, “
Influence of Length on Cytotoxicity of Multi-Walled Carbon Nanotubes Against Human Acute Monocytic Leukemia Cell Line THP-1 In Vitro and Subcutaneous Tissue of Rats In Vivo
,”
Mol. BioSyst.
,
1
, pp.
176
182
.
156.
Ding
,
L.
,
Stilwell
,
J.
,
Zhang
,
T.
,
Elboudwarej
,
O.
,
Jiang
,
H.
,
Selegue
,
J.
,
Cooke
,
P.
,
Gray
,
J.
, and
Chen
,
F.
, 2005, “
Molecular Characterization of the Cytotoxic Mechanism of Multiwall Carbon Nanotubes and Nano-Onions on Human Skin Fibroblast
,”
Nano Lett.
1530-6984,
5
, pp.
2448
2464
.
157.
Bottini
,
M.
,
Bruckner
,
S.
,
Nika
,
K.
,
Bottini
,
N.
,
Bellucci
,
S.
,
Magrini
,
A.
,
Bergamaschi
,
A.
, and
Mustelin
,
T.
, 2006, “
Multi-Walled Carbon Nanotubes Induce T Lymphocyte Apoptosis
,”
Toxicol. Lett.
0378-4274,
160
, pp.
121
126
.
158.
Long
,
T.
,
Saleh
,
N.
,
Tilton
,
R.
,
Lowry
,
G.
, and
Veronesi
,
B.
, 2006, “
Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): Implications for Nanoparticle Neurotoxicity
,”
Environ. Sci. Technol.
0013-936X,
40
, pp.
4346
4352
.
You do not currently have access to this content.