Nanorobots are propitious to swim or fly compared with crawling and walking because of issues with desirable characteristics of high velocity, efficiency, specificity, controllability, and a simple propagation mechanism that can be realized with miniaturized parts. Inspired by the fact that microorganisms existing in nature function expeditiously under these circumstances, researchers have shown a great interest to conceptualize, model, analyze, and make micro-/nanosized swimmers (nanorobots) that can move in body fluids for applications such as targeted drug delivery, nanomedication, and in-viscera nanosurgery. The present work compiles modeling of physics as investigated since 1951 of flagellar propulsion in engineering nanorobots. Existing theories in flagellar propulsion such as resistive force theory, slender body theory, Kirchhoff rod theory, bead model, and boundary element method as well as progress in designing the propulsion system of a nanorobot are summarized, and various interdisciplinary aspects of realizing nanorobots and issues in moving nanorobots have been presented chronologically.

1.
Sharma
,
N. N.
, and
Mittal
,
R. K.
, 2008, “
Nanorobot Movement: Challenges and Biologically Inspired Solutions
,”
Int. J. Smart Sensing and Intelligent Systems
,
1
(
1
), pp.
87
109
.
2.
Zheng
,
C.
, and
Changzhi
,
G.
, 2006, “
Nanofabrication Challenges for NEMS
,”
Proceedings of the First IEEE International Conference on Nano/Micro Engineered and Molecular Systems
, Zhuzai, China, pp.
607
610
.
3.
Zhuhai
,
C.
, and
Neizvestny
,
G.
, 2006, “
Trends in Development of Modern Silicon Nanoelectronics
,”
Proceedings of the Seventh International Siberian Workshop and Tutorials, EDM 2006
, ERLAGOL.
4.
Gupta
,
T.
, and
Jayatissa
,
A. H.
, 2003, “
Recent Advances in Nanotechnology: Key Issues and Potential Problem Areas
,”
Proceedings of the Third IEEE International Conference on Nanotechnology
, Vol.
2
, pp.
469
472
.
5.
Chang
,
C. -y.
, 2003, “
The Highlights in the Nano World
,”
Proc. IEEE
0018-9219,
91
, pp.
1756
1764
.
6.
Chau
,
R.
, 2006, “
Silicon Nanotechnologies and Emerging Non-Silicon Nanoelectronics
,”
IEEE Plenary Talk
.
7.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphite Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
8.
Kim
,
P.
, and
Lieber
,
C. M.
, 1999, “
Nanotube Nanotweezers
,”
Science
0036-8075,
286
, pp.
2148
2150
.
9.
Cumings
,
J.
, and
Zettl
,
A.
, 2000, “
Low Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
0036-8075,
289
, pp.
602
604
.
10.
Cumings
,
J.
,
Collins
,
P. G.
, and
Zettl
,
A.
, 2000, “
Peeling and Sharpening Multiwall Carbon Nanotubes
,”
Nature (London)
0028-0836,
406
, p.
586
.
11.
Davis
,
A. P.
, 1999, “
Synthetic Molecular Motors
,”
Nature (London)
0028-0836,
401
, pp.
120
121
.
12.
Browne
,
W. R.
, and
Feringa
,
B. L.
, 2006, “
Making Molecular Machines Work
,”
Nat. Nanotechnol.
1748-3387,
1
, pp.
25
35
.
13.
Schoevaars
,
A. M.
,
Kruizinga
,
W.
,
Zijlstra
,
R.
,
Veldman
,
W.
,
Spek
,
A. L.
, and
Feringa
,
B. L.
, 1997, “
Towards a Switchable Molecular Rotor
,”
J. Org. Chem.
0022-3263,
62
, pp.
4943
4948
.
14.
Clayden
,
J.
, and
Pink
,
J. H.
, 1998, “
Concerted Rotation in Tertiary Aromatic Amide: Towards a Simple Molecular Gear
,”
Angew. Chem., Int. Ed.
1433-7851,
37
, pp.
1937
1939
.
15.
Huck
,
N. P. M.
,
Jager
,
W. F.
,
de Lange
,
B.
, and
Feringa
,
B. L.
, 1996, “
Dynamic Control and Amplification of Molecular Chirality by Circularly Polarized Light
,”
Science
0036-8075,
273
, pp.
1686
1688
.
16.
Bissell
,
S. A.
,
Cordova
,
E.
,
Kaifer
,
A. E.
, and
Stoddart
,
J. F.
, 1994, “
A Chemically and Electrochemically Switchable Moleculer Shuttle
,”
Nature (London)
0028-0836,
369
, pp.
133
137
.
17.
Bedard
,
T. C.
, and
Moore
,
J. S.
, 1995, “
Design and Synthesis of a Molecular Turnstile
,”
J. Am. Chem. Soc.
0002-7863,
117
, pp.
10662
10671
.
18.
Kelly
,
T. R.
,
Tellitu
,
I.
, and
Sestelo
,
J. P.
, 1998, “
New Molecular Devices: In Search of Molecular Ratchets
,”
J. Org. Chem.
0022-3263,
63
, pp.
3655
3665
.
19.
Badjic
,
J. D.
,
Balzani
,
V.
,
Credi
,
A.
,
Silvi
,
S.
, and
Stoddart
,
J. F.
, 2004, “
A Molecular Elevator
,”
Science
0036-8075,
303
, pp.
1845
1849
.
20.
Badjic
,
J. D.
,
Ronconi
,
C. M.
,
Stoddart
,
J. F.
,
Balzani
,
V.
,
Silvi
,
S.
, and
Credi
,
A.
, 2006, “
Operating Molecular Elevators
,”
J. Am. Chem. Soc.
0002-7863,
128
, pp.
1489
1499
.
21.
Gimzewski
,
J. K.
,
Joachim
,
C.
,
Schlittler
,
R. R.
,
Langlais
,
V.
,
Tang
,
H.
, and
Johannsen
,
I.
, 1998, “
Rotation of a Single Molecule Within a Supramolecular Bearing
,”
Science
0036-8075,
281
, pp.
531
533
.
22.
Balzani
,
V.
,
Gomez-Lopez
,
M.
, and
Stoddart
,
J. F.
, 1998, “
Molecular Machines
,”
Acc. Chem. Res.
0001-4842,
31
, pp.
405
414
.
23.
Sauvage
,
J. P.
, 1998, “
Transition Metal-Containing Rotaxanes and Catenanes in Motion Toward Molecular Machine and Motors
,”
Acc. Chem. Res.
0001-4842,
31
, pp.
611
619
.
24.
Astumian
,
R. D.
, 2001, “
Making Molecules Into Motors
,”
Sci. Am.
0036-8733,
285
, pp.
56
64
.
25.
Requicha
,
A. A. G.
, 2003, “
Nanorobots, NEMS and Nanoassembly
,”
Proc. IEEE
0018-9219,
91
(
11
), pp.
1922
1933
.
26.
Stroscio
,
J. A.
, and
Eigler
,
D. M.
, 1991, “
Atomic and Molecular Manipulation With the Scanning Tunneling Microscope
,”
Science
0036-8075,
254
(
5036
), pp.
1319
1326
.
27.
Freitas
,
R. A.
, Jr.
, 1998, “
Exploratory Design in Medical Nanotechnology: A Mechanical Artificial Red Cell
,”
Artificial Cells, Blood Design, and Immobility, Biotech.
,
26
, pp.
441
447
.
28.
Behkam
,
B.
, and
Sitti
,
M.
, 2006, “
Towards Hybrid Swimming Microrobots: Bacteria Assisted Propulsion of Polystyrene Beads
,”
Proceedings of the 28th IEEE EMBS Annual International Conference
, New York, pp.
2421
2424
.
29.
Cavalcanti
,
A.
, and
Freitas
,
R. A.
, Jr.
, 2005, “
Nanorobotics Control Design: A Collective Behavior Approach for Medicine
,”
IEEE Trans. Nanobiosci.
1536-1241,
4
(
2
), pp.
133
140
.
30.
Sitti
,
M.
, 2004, “
Micro- and Nano-Scale Robotics
,”
Proceedings of the 2004 American Control Conference
, MA, pp.
1
8
.
31.
Siegel
,
M.
, 2001, “
Smart Sensors and Small Robots
,”
Proceedings of the IEEE Instrumentation and Measurement Technology Conference
, Budapest, Hungary, pp.
303
308
.
32.
Freitas
,
R. A.
, Jr.
, 1999,
Nanomedicine, Volume I: Basic Capabilities
,
Landes Bioscience
,
Georgetown, TX
.
33.
Sharma
,
N. N.
,
Ganesh
,
M.
, and
Mittal
,
R. K.
, 2004, “
Non-Brownian Motion of Nanoparticle: An Impact Process Model
,”
IEEE Trans. Nanotechnol.
1536-125X,
3
(
1
), pp.
180
186
.
34.
Sharma
,
N. N.
,
Ganesh
,
M.
, and
Mittal
,
R. K.
, 2005, “
Nano-Electromechanical System Impact Spectrum Modeling and Clubbing of Structural Properties
,”
IE (I) Journal-MC
,
85
, pp.
188
193
.
35.
Sharma
,
N. N.
, and
Mittal
,
R. K.
, 2005, “
Brownian Motion Model of Nanoparticle Considering Non-Rigidity of Matter—A Systems Modeling Approach
,”
IEEE Trans. Nanotechnol.
1536-125X,
4
(
2
), pp.
180
186
.
36.
Lighthill
,
J.
, 1976, “
Flagellar Hydrodynamics
,”
SIAM Rev.
0036-1445,
18
, pp.
161
173
.
37.
Dreyfus
,
R.
,
Baudry
,
J.
,
Roper
,
M. L.
,
Fermigier
,
M.
,
Stone
,
H. A.
, and
Bibette
,
J.
, 2005, “
Microscopic Artificial Swimmers
,”
Nature (London)
0028-0836,
437
, pp.
862
865
.
38.
Kósa
,
G.
,
Shoham
,
M.
, and
Zaaroor
,
M.
, 2006, “
Analysis of a Swimming Micro Robot
,”
The First IEEE /RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
, Italy, pp.
131
135
.
39.
Ghosh
,
A.
, and
Fischer
,
P.
, 2009, “
Controlled Propulsion of Artificial Magnetic Nanostructured Propellers
,”
Nano Lett.
1530-6984,
9
, pp.
2243
2245
.
40.
Iima
,
M.
, and
Mikhailov
,
A. S.
, 2009, “
Propulsion Hydrodynamics of a Butterfly Micro-Swimmer
,”
EPL
0295-5075,
85
, p.
44001
.
41.
Wiggins
,
C. H.
, and
Goldstein
,
R. E.
, 1998, “
Flexive and Propulsive Dynamics of Elastica at Low Reynolds Number
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
3879
3882
.
42.
Camalet
,
S.
,
Julicher
,
F.
, and
Prost
,
J.
, 1999, “
Self-Organized Beating and Swimming of Internally Driven Filaments
,”
Phys. Rev. Lett.
0031-9007,
82
, pp.
1590
1593
.
43.
Wolgemuth
,
C. W.
,
Powers
,
T. R.
, and
Goldstein
,
R. E.
, 2000, “
Twirling and Whirling: Viscous Dynamics of Rotating Elastic Filaments
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
1623
1626
.
44.
Cavalcanti
,
A.
,
Hogg
,
T.
, and
Shirinzadeh
,
B.
, 2006, “
Nanorobotics System Simulation in 3D Workspaces With Low Reynolds Number
,”
IEEE MHS 2006, International Symposium on Micro-NanoMechatronics and Human Science
, pp.
226
231
.
45.
Podaima
,
B. W.
,
Vaseeharan
,
T.
, and
Gordon
,
R.
, 2004, “
Microscopic Dynamics of Cytobots
,”
CCECE 2004–CCGEI 2004
,
Niagara Falls
, pp.
1527
1532
.
46.
Brey
,
D.
, 2001,
Cell Movements: From Molecules to Motility
,
2nd ed.
,
Garland
,
New York
.
47.
Higdon
,
J. L. L.
, 1979, “
A Hydrodynamic Analysis of Flagellar Propulsion
,”
J. Fluid Mech.
0022-1120,
90
(
4
), pp.
685
711
.
48.
Kim
,
M. J.
, and
Powers
,
T. R.
, 2004, “
Hydrodynamic Interactions Between Rotating Helices
,”
Phys. Rev. E
1063-651X,
69
, p.
061910
.
49.
Powers
,
T. R.
, 2002, “
Role of Body Rotation in Bacterial Flagellar Bundling
,”
Phys. Rev. E
1063-651X,
65
, p.
040903
(R).
50.
Adtani
,
C.
,
Das
,
A.
, and
Sharma
,
N. N.
, 2009, “
Investigation of Hybrid Bio-Mechanical Mechanism for Nanorobotic Propulsion
,”
Int. J. Biomechatronics and Biomedical Robotics
,
1
(
1
), pp.
31
36
.
51.
Subramanian
,
S.
,
Rathore
,
J. S.
, and
Sharma
,
N. N.
, 2009, “
Design and Analysis of Helical Flagella Propelled Nanorobots
,”
Proceedings of the Fourth International IEEE Conference on Micro/Nano Engineered and Molecular Systems (IEEE-NEMS 2009)
, Shenzen, China, pp.
950
953
.
52.
Majumdar
,
R.
,
Rathore
,
J. S.
, and
Sharma
,
N. N.
, 2009, “
Simulation of Swimming Nanorobots in Biological Fluids
,”
Proceedings of the Fourth International Conference on Autonomous Robots and Agents (ICARA 2009)
, Wellington, New Zealand, pp.
79
82
.
53.
Adtani
,
C.
,
Das
,
A.
, and
Sharma
,
N. N.
, 2009, “
Modeling of Hybrid Bio-Mechanical Mechanism for Nanorobotic Propulsion
,”
Proceedings of the Fourth International Conference on Autonomous Robots and Agents (ICARA 2009)
, Wellington, New Zealand, pp.
83
86
.
54.
Ludwig
,
W.
, 1931, “
Zur Theorie der Flimmerbewegung (Dynamik, Nutzeffekt, Energiebalanz)
,”
J. Comp. Physiol. [A]
,
13
, pp.
397
504
.
55.
Siva Kumar
,
M.
, and
Philominathan
,
P.
, 2010, “
The Physics of Flagellar Motion of E. Coli During Chemotaxis
,”
Biophys. Rev.
,
2
, pp.
13
20
.
56.
Taylor
,
G.
, 1951, “
Analysis of the Swimming of Microscopic Organisms
,”
Proc. R. Soc. London, Ser. A
0950-1207,
209
, pp.
447
461
.
57.
Taylor
,
G.
, 1952, “
The Action of Waving Cylindrical Tails in Propelling Microscopic Organisms
,”
Proc. R. Soc. London, Ser. A
0950-1207,
211
, pp.
225
239
.
58.
Hancock
,
G.
, 1953, “
The Self-Propulsion of Microscopic Organisms Through Liquids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
217
, pp.
96
121
.
59.
Gray
,
J.
, 1955, “
The Movement of Sea-Urchin Spermatozoa
,”
J. Exp. Biol.
0022-0949,
32
, pp.
775
801
.
60.
Gray
,
J.
, and
Hancock
,
G. J.
, 1955, “
The Propulsion of Sea-Urchin Spermatozoa
,”
J. Exp. Biol.
0022-0949,
32
, pp.
802
814
.
61.
Machin
,
K. E.
, 1958, “
Wave Propagation Along Flagella
,”
J. Exp. Biol.
0022-0949,
35
, pp.
796
806
.
62.
Chwang
,
A. T.
, and
Wu
,
T. Y.
, 1971, “
A Note on Helical Movement of Microorganisms
,”
Proc. R. Soc. London, Ser. B
0962-8452,
178
, pp.
327
346
.
63.
Berg
,
H. C.
, and
Anderson
,
R. A.
, 1973, “
Bacteria Swim by Rotating Their Flagellar Filaments
,”
Nature (London)
0028-0836,
245
, pp.
380
382
.
64.
Happel
,
J.
, and
Brenner
,
H.
, 1965,
Low Reynolds Number Hydrodynamics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
65.
Keller
,
J. B.
, and
Rubinow
,
S. I.
, 1976, “
Swimming of Flagellated Microorganisms
,”
Biophys. J.
0006-3495,
16
, pp.
151
170
.
66.
Winet
,
H.
, and
Keller
,
S. R.
, 1976, “
Spirillum Swimming: Theory and Observations of Propulsion by the Flagellar Bundle
,”
J. Exp. Biol.
0022-0949,
65
, pp.
577
602
.
67.
de la Torre
,
J. G.
, and
Bloomfield
,
V. A.
, 1977, “
Hydrodynamic Theory of Swimming of Flagellated Microorganisms
,”
Biophys. J.
0006-3495,
20
, pp.
49
67
.
68.
Chwang
,
A. T.
, and
Wu
,
T. Y.
, 1974, “
Hydromechanics of Low-Reynolds Number Flow, Part 1. Rotation of Axisymmetric Prolate Bodies
,”
J. Fluid Mech.
0022-1120,
63
, pp.
607
622
.
69.
Chwang
,
A. T.
, and
Wu
,
T. Y.
, 1975, “
Hydromechanics of Low-Reynolds Number Flow, Part 2. Singularity Method for Stokes Flows
,”
J. Fluid Mech.
0022-1120,
67
, pp.
787
815
.
70.
Johnson
,
R. E.
, 1980, “
An Improved Slender Body Theory for Stokes Flow
,”
J. Fluid Mech.
0022-1120,
99
, pp.
411
431
.
71.
Johnson
,
R. E.
, and
Brokaw
,
C. J.
, 1979, “
Flagellar Hydrodynamics: A Comparison Between Resistive-Force Theory and Slender-Body Theory
,”
Biophys. J.
0006-3495,
25
, pp.
113
127
.
72.
Purcell
,
E. M.
, 1977, “
Life at Low Reynolds Number
,”
Am. J. Phys.
0002-9505,
45
, pp.
3
11
.
73.
Sleigh
,
M. A.
, 1991, “
Mechanisms of Flagellar Propulsion: A Biologist’s View of the Relation Between Structure, Motion, and Fluid Mechanics
,”
Protoplasma
0033-183X,
164
, pp.
45
53
.
74.
Lowe
,
G.
,
Meister
,
M.
, and
Berg
,
H. C.
, 1987, “
Rapid Rotation of Flagellar Bundles in Swimming Bacteria
,”
Nature (London)
0028-0836,
325
, pp.
637
640
.
75.
Phan-Thien
,
N.
,
Tran-Cong
,
T.
, and
Ramia
,
M.
, 1987, “
A Boundary Element Analysis of Flagellar Propulsion
,”
J. Fluid Mech.
0022-1120,
184
, pp.
533
549
.
76.
Ramia
,
M.
, 1991, “
Numerical Model for the Locomotion of Spirilla
,”
Biophys. J.
0006-3495,
60
, pp.
1057
1078
.
77.
Ramia
,
M.
,
Tullock
,
D. L.
, and
Phan-Thien
,
N.
, 1993, “
The Role of Hydrodynamic Interaction in the Locomotion of Microorganisms
,”
Biophys. J.
0006-3495,
65
, pp.
755
778
.
78.
Nasseri
,
S.
, and
Phan-Thien
,
N.
, 1996, “
On the Path and Efficiency of Two Micromachines With Rigid Tails
,”
Comput. Mech.
0178-7675,
18
, pp.
192
199
.
79.
Nasseri
,
S.
, and
Phan-Thien
,
N.
, 1997, “
Geometric Optimization of a Micromachine With a Spiral Tail Immersed in Viscous Medium
,”
Comput. Mech.
0178-7675,
20
, pp.
267
271
.
80.
Fujita
,
T.
, and
Kawai
,
T.
, 2001, “
Optimum Shape of a Flagellated Microorganism
,”
JSME Int. J., Ser. C
1340-8062,
44
, pp.
952
957
.
81.
Trachtenberg
,
S.
,
Fishelov
,
D.
, and
Ben-Artzi
,
M.
, 2003, “
Bacterial Flagellar Microhydrodynamics: Laminar Flow Over Complex Flagellar Filaments, Analog Archimedean Screws and Cylinders, and Its Perturbations
,”
Biophys. J.
0006-3495,
85
, pp.
1345
1357
.
82.
Takano
,
Y.
, and
Goto
,
T.
, 2003, “
Numerical Analysis of Small Deformation of Flexible Helical Flagellum of Swimming Bacteria
,”
JSME Int. J., Ser. C
1340-8062,
46
(
4
), pp.
1234
1240
.
83.
Edd
,
J.
,
Payen
,
S.
,
Rubinsky
,
B.
,
Stoller
,
M. L.
, and
Setti
,
M.
, 2003, “
Biomimetic Propulsion for a Swimming Surgical Micro-Robot
,”
Proceedings of the 2003 IEEE/RSJ International Conference on the Intelligent Robots and Systems
, pp.
2583
2588
.
84.
Koehler
,
S. A.
, and
Powers
,
T. R.
, 2000, “
Twirling Elastica: Kinks, Viscous Drag, and Torsional Stress
,”
Phys. Rev. Lett.
0031-9007,
85
(
22
), pp.
4827
4830
.
85.
Goto
,
T.
,
Inaoka
,
R.
, and
Tokano
,
Y.
, 2000, “
Numerical Analysis of Bacterium Motion Based on the Slender Body Theory
,”
JSME Int. J., Ser. C
1340-8062,
43
(
4
), pp.
875
881
.
86.
Magariyama
,
Y.
,
Masuda
,
S.
,
Takano
,
Y.
,
Ohtani
,
T.
, and
Kudo
,
S.
, 2001, “
Difference Between Forward and Backward Swimming Speeds of the Single Polar-Flagellated Bacterium, Vibrio Alginolyticus
,”
FEMS Microbiol. Lett.
0378-1097,
205
, pp.
343
347
.
87.
Berg
,
H. C.
, and
Turner
,
L.
, 1979, “
Movement of Microorganisms in Viscous Environments
,”
Nature (London)
0028-0836,
278
, pp.
349
351
.
88.
Lowe
,
C. P.
, 2001, “
A Hybrid Particle/Continuum Model for Micro-Organism Motility
,”
FGCS, Future Gener. Comput. Syst.
0167-739X,
17
, pp.
853
862
.
89.
Behkam
,
B.
, and
Sitti
,
M.
, 2004, “
E. Coli Inspired Propulsion for Swimming Microrobots
,”
Proceedings of 2004 ASME International Mechanical Engineering Congress
, Anaheim, CA, pp.
59621
59626
.
90.
Behkam
,
B.
, and
Sitti
,
M.
, 2005, “
Modeling and Testing of a Biomimetic Flagellar Propulsion Method for Microscale Biomedical Swimming Robots
,”
Proceedings of 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Monterey, CA, pp.
37
42
.
91.
Behkam
,
B.
, and
Sitti
,
M.
, 2006, “
Design Methodology for Biomimetic Propulsion of Miniature Swimming Robots
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
, pp.
36
43
.
92.
Flores
,
H.
,
Lobaton
,
E.
,
Mendez-Diez
,
S.
,
Tlupova
,
S.
, and
Cortez
,
R.
, 2005, “
A Study of Bacterial Flagellar Bundling
,”
Bull. Math. Biol.
0092-8240,
67
, pp.
137
168
.
93.
Manghi
,
M.
,
Schlagberger
,
X.
, and
Netz
,
R. R.
, 2006, “
Propulsion With a Rotating Elastic Nanorod
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
068101
.
94.
Chattopadhyay
,
S.
,
Moldovan
,
R.
,
Yeung
,
C.
, and
Wu
,
X. L.
, 2006, “
Swimming Efficiency of Bacterium Escherichia Coli
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
37
), pp.
13712
13717
.
95.
Kosa
,
G.
,
Shoham
,
M.
, and
Zaaroor
,
M.
, 2007, “
Propulsion Method for Swimming Microrobots
,”
IEEE Trans. Robot.
,
23
(
1
), pp.
137
150
.
96.
Kosa
,
G.
,
Hata
,
N.
,
Jolesz
,
F.
,
Neubach
,
Z.
,
Shoham
,
M.
,
Zaaroor
,
M.
, and
Szekely
,
G.
, 2008, “
Flagellar Swimming for Medical Micro Robots: Theory, Experiments and Application
,”
Proceedings of the Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
, Scottsdale, AZ, pp.
258
263
.
97.
Earl
,
D. J.
,
Pooley
,
C. M.
,
Ryder
,
J. F.
,
Bredberg
,
I.
, and
Yeomans
,
J. M.
, 2007, “
Modeling Microscopic Swimmers at Low Reynolds Number
,”
J. Chem. Phys.
0021-9606,
126
, p.
064703
.
98.
Pooley
,
C. M.
,
Alexander
,
G. P.
, and
Yeomans
,
J. M.
, 2008, “
Swimming With a Friend at Low Reynolds Number
,” available at http://arxiv.org/PS_cache/arxiv/pdf/0705/0705.3612v1.pdfhttp://arxiv.org/PS_cache/arxiv/pdf/0705/0705.3612v1.pdf
99.
Coq
,
N.
,
Roure
,
O. D.
,
Marthelot
,
J.
,
Bartolo
,
D.
, and
Fermigier
,
M.
, 2008, “
Rotational Dynamics of a Soft Filament: Wrapping Transition and Propulsive Force
,”
Phys. Fluids
1070-6631,
20
, p.
051703
.
100.
Li
,
H.
,
Tan
,
J.
, and
Zhang
,
M.
, 2009, “
Dynamics Modeling and Analysis of a Swimming Microrobot for Controlled Drug Delivery
,”
IEEE Trans. Autom. Sci. Eng.
,
6
, pp.
220
227
.
101.
Yang
,
J.
,
Wolgemuth
,
C. W.
, and
Huber
,
G.
, 2009, “
Kinematics of the Swimming of Spiroplasma
,”
Phys. Rev. Lett.
0031-9007,
102
, p.
218102
.
You do not currently have access to this content.