The biophysical and biochemical properties of RADA16-I, the representative of a class of self-assembling peptides, were studied to elucidate the molecular mechanism of nanofiber and hydrogel formations. We found that self-assembly occurs in the solution at low pH (pH 4), rather than the popular belief that it occurs in the physiological environment. Actually, the peptide lost its β-sheet structure and formed irregular aggregates in the condition around pH 7. Our results demonstrated that the extended conformation of peptide backbone caused by the electrostatic repulsive force in acid solution is crucial for the peptide to self-assemble into nanofibers. Importantly, we have proposed a mechanism for the peptide to form nanofiber hydrogel in the physiological condition, which is not propitious for nanofiber formation. Hypothetically, it is by virtue of the tendency of fibers to collapse and form irregular aggregates at pH 7 that we could obtain stable hydrogels by introducing phosphate buffered saline into the system.

1.
Zhang
,
S.
,
Holmes
,
T.
,
Lockshin
,
C.
, and
Rich
,
A.
, 1993, “
Spontaneous Assembly of a Self-Complementary Oligopeptide to Form a Stable Macroscopic Membrane
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
90
(
8
), pp.
3334
3338
.
2.
Zhang
,
S.
, 2003, “
Fabrication of Novel Biomaterials Through Molecular Self-Assembly
,”
Nat. Biotechnol.
1087-0156,
21
(
10
), pp.
1171
1178
.
3.
Zhang
,
S.
, 2002, “
Emerging Biological Materials Through Molecular Self-Assembly
,”
Biotechnol. Adv.
0734-9750,
20
(
5–6
), pp.
321
339
.
4.
Zhao
,
X.
, and
Zhang
,
S.
, 2006, “
Molecular Designer Self-Assembling Peptides
,”
Chem. Soc. Rev.
0306-0012,
35
(
11
), pp.
1105
1110
.
5.
Zhao
,
X.
, and
Zhang
,
S. G.
, 2006, “
Self-Assembling Nanopeptides Become a New Type of Biomaterial
,”
Advances in Polymer Science: Polymers for Regenerative Medicine
,
Springer-Verlag
,
Berlin
, pp.
145
170
.
6.
Aggeli
,
A.
,
Bell
,
M.
,
Boden
,
N.
,
Keen
,
J. N.
,
Knowles
,
P. F.
,
McLeish
,
T. C. B.
,
Pitkeathly
,
M.
, and
Radford
,
S. E.
, 1997, “
Responsive Gels Formed by the Spontaneous Self-Assembly of Peptides Into Polymeric Beta-Sheet Tapes
,”
Nature (London)
0028-0836,
386
(
6622
), pp.
259
262
.
7.
Hartgerink
,
J. D.
,
Beniash
,
E.
, and
Stupp
,
S. I.
, 2001, “
Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers
,”
Science
0036-8075,
294
(
5547
), pp.
1684
1688
.
8.
Bokhari
,
M. A.
,
Akay
,
G.
,
Zhang
,
S.
, and
Birch
,
M. A.
, 2005, “
The Enhancement of Osteoblast Growth and Differentiation In Vitro on a Peptide Hydrogel-PolyHIPE Polymer Hybrid Material
,”
Biomaterials
0142-9612,
26
(
25
), pp.
5198
5208
.
9.
Zhang
,
S.
,
Lockshin
,
C.
,
Cook
,
R.
, and
Rich
,
A.
, 1994, “
Unusually Stable b-Sheet Formation in an Ionic Self-Complementary Oligopeptide
,”
Biopolymers
0006-3525,
34
(
5
), pp.
663
672
.
10.
Zhang
,
S.
,
Holmes
,
T. C.
,
DiPersio
,
C. M.
,
Hynes
,
R. O.
,
Su
,
X.
, and
Rich
,
A.
, 1995, “
Self-Complementary Oligopeptide Matrices Support Mammalian Cell Attachment
,”
Biomaterials
0142-9612,
16
(
18
), pp.
1385
1393
.
11.
Zhang
,
S.
, and
Altman
,
M.
, 1999, “
Peptide Self-Assembly in Functional Polymer Science and Engineering
,”
React. Funct. Polym.
1381-5148,
41
(
1–3
), pp.
91
102
.
12.
Holmes
,
T. C.
,
de Lacale
,
S.
,
Su
,
X.
,
Liu
,
G.
,
Rich
,
A.
, and
Zhang
,
S.
, 2000, “
Extensive Neurite Outgrowth and Active Synapse Formation on Self-Assembling Peptide Scaffolds
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
97
(
12
), pp.
6728
6733
.
13.
Zhang
,
S.
,
Gelain
,
F.
, and
Zhao
,
X.
, 2005, “
Designer Self-Assembling Peptide Nanofiber Scaffolds for 3D Tissue Cell Cultures
,”
Semin Cancer Biol.
1044-579X,
15
(
5
), pp.
413
420
.
14.
Zhang
,
S.
, 2004, “
Beyond the Petri Dish
,”
Nat. Biotechnol.
1087-0156,
22
(
2
), pp.
151
152
.
15.
Semino
,
C. E.
,
Kasahara
,
J.
,
Hayashi
,
Y.
, and
Zhang
,
S.
, 2004, “
Entrapment of Migrating Hippocampal Neural Cells in Three-Dimensional Peptide Nanofiber Scaffold
,”
Tissue Eng.
1076-3279,
10
(
3–4
), pp.
643
655
.
16.
Semino
,
C. E.
,
Merok
,
J. R.
,
Crane
,
G. G.
,
Panagiotakos
,
G.
, and
Zhang
,
S.
, 2003, “
Functional Differentiation of Hepatocyte-Like Spheroid Structures From Putative Liver Progenitor Cells in Three-Dimensional Peptide Scaffolds
,”
Differentiation
0301-4681,
71
(
4–5
), pp.
262
270
.
17.
Kretsinger
,
J. K.
,
Haines
,
L. A.
,
Ozbaso
,
B.
,
Pochan
,
D. J.
, and
Schneider
,
J. P.
, 2005, “
Cytocompatibility of Self-Assembled [Beta]-Hairpin Peptide Hydrogel Surfaces
,”
Biomaterials
0142-9612,
26
(
25
), pp.
5177
5186
.
18.
Davis
,
M. E.
,
Motion
,
J. P. M.
,
Narmoneva
,
D. A.
,
Takahashi
,
T.
,
Hakuno
,
D.
,
Kamm
,
R. D.
,
Zhang
,
S.
, and
Lee
,
R. T.
, 2005, “
Injectable Self-Assembling Peptide Nanofibers Create Intramyocardial Microenvironments for Endothelial Cells
,”
Circulation
0009-7322,
111
(
4
), pp.
442
450
.
19.
Nagai
,
Y.
,
Unsworth
,
L. D.
,
Koutsopoulos
,
S.
, and
Zhang
,
Z.
, 2006, “
Slow Release of Molecules in Self-Assembling Peptide Nanofiber Scaffold
,”
J. Controlled Release
0168-3659,
115
(
1
), pp.
18
25
.
20.
Keyes-Baig
,
C.
,
Duhamel
,
J.
,
Fung
,
S.-Y.
,
Bezaire
,
J.
, and
Chen
,
P.
, 2004, “
Self-Assembling Peptide as a Potential Carrier of Hydrophobic Compounds
,”
J. Am. Chem. Soc.
0002-7863,
126
(
24
), pp.
7522
7532
.
21.
Ellis-Behnke
,
R. G.
,
Liang
,
Y.-X.
,
You
,
S.-W.
,
Tay
,
D. K. C.
,
Zhang
,
S.
,
So
,
K.-F.
, and
Schneider
,
G. E.
, 2006, “
Nano Neuro Knitting: Peptide Nanofiber Scaffold for Brain Repair and Axon Regeneration With Functional Return of Vision
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
13
), pp.
5054
5059
.
22.
Davis
,
M. E.
,
Hsieh
,
P. C. H.
,
Takahashi
,
T.
,
Song
,
Q.
,
Zhang
,
S.
,
Kamm
,
R. D.
,
Grodzinsky
,
A. J.
,
Anversa
,
P.
, and
Lee
,
R. T.
, 2006, “
Local Myocardial Insulin-Like Growth Factor 1 (IGF-1) Delivery With Biotinylated Peptide Nanofibers Improves Cell Therapy for Myocardial Infarction
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
21
), pp.
8155
8160
.
23.
Kisiday
,
J.
,
Jin
,
M.
,
Kurz
,
B.
,
Hung
,
H.
,
Semino
,
C.
,
Zhang
,
S.
, and
Grodzinsky
,
A. J.
, 2002, “
Self-Assembling Peptide Hydrogel Fosters Chondrocyte Extracellular Matrix Production and Cell Division: Implications for Cartilage Tissue Repair
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
(
15
), pp.
9996
10001
.
24.
Ellis-Behnke
,
R. G.
,
Liang
,
X. Y.
,
Tay
,
D. K.
,
Kau
,
P. W.
,
Schneider
,
G. E.
,
Zhang
,
S.
,
Wu
,
W.
, and
So
,
K. F.
, 2006, “
Nano Hemostat Solution: Immediate Hemostasis at the Nanoscale
,”
Nanomedicine
1743-5889,
2
(
4
), pp.
207
215
.
25.
Gelain
,
F.
,
Bottai
,
D.
,
Vescovi
,
A.
, and
Zhang
,
S.
, 2006, “
Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures
,”
PLoS ONE
1932-6203,
1
(
1
), p.
e119
.
26.
Horii
,
A.
,
Wang
,
X.
,
Gelain
,
F.
, and
Zhang
,
S.
, 2007, “
Biological Designer Self-Assembling Peptide Nanofiber Scaffolds Significantly Enhance Osteoblast Proliferation, Differentiation and 3-D Migration
,”
PLoS ONE
1932-6203,
2
(
2
), p.
e190
.
27.
Genov
,
E.
,
Shen
,
C.
,
Zhang
,
S.
, and
Semino
,
C. E.
, 2005, “
The Effect of Functionalized Self-Assembling Peptide Scaffolds on Human Aortic Endothelial Cell Function
,”
Biomaterials
0142-9612,
26
(
16
), pp.
3341
3351
.
28.
Zhao
,
X.
,
Nagai
,
Y.
,
Reeves
,
P. J.
,
Kiley
,
P.
,
Khorana
,
H. G.
, and
Zhang
,
S.
, 2006, “
Designer Short Peptide Surfactants Stabilize G Protein-Coupled Receptor Bovine Rhodopsin
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
47
), pp.
17707
17712
.
29.
Kiley
,
P.
,
Zhao
,
X.
,
Vaughn
,
M.
,
Baldo
,
M. A.
,
Bruce
,
B. D.
, and
Zhang
,
S.
, 2005, “
Self-Assembling Peptide Detergents Stabilize Isolated Photosystem Ion a Dry Surface for an Extended Time
,”
PLoS Biol.
1545-7885,
3
(
7
), p.
e230
.
30.
Zerovnik
,
E.
, 2002, “
Amyloid-Fibril Formation: Proposed Mechanisms and Relevance to Conformational Disease
,”
Eur. J. Biochem.
0014-2956,
269
(
14
), pp.
3362
3371
.
31.
Zhang
,
S.
, and
Rich
,
A.
, 1997, “
Direct Conversion of an Oligopeptide From a Beta-Sheet to an Alpha-Helix: A Model for Amyloid Formation
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
94
(
1
), pp.
23
28
.
32.
Yokoi
,
H.
,
Kinoshita
,
T.
, and
Zhang
,
S.
, 2005, “
Dynamic Reassembly of Peptide RADA16 Nanofiber Scaffold
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
(
24
), pp.
8414
8419
.
33.
Kelly
,
J. W.
, and
Balch
,
W. E.
, 2003, “
Amyloid as a Natural Product
,”
J. Cell Biol.
0021-9525,
161
(
3
), pp.
461
462
.
34.
Zhang
,
S.
, 2003, “
Building From the Bottom Up
,”
Mater. Today
1369-7021,
6
(
5
), pp.
20
27
.
35.
Sachiko Matsumura
,
S. U. H. M.
, 2004, “
Fabrication of Nanofibers With Uniform Morphology by Self-Assembly of Designed Peptides
,”
Chem.-Eur. J.
0947-6539,
10
(
11
), pp.
2789
2794
.
36.
Aggeli
,
A.
,
Bell
,
M.
,
Boden
,
N.
,
Keen
,
J. N.
,
McLeish
,
T. C. B.
,
Nyrkova
,
I.
,
Radford
,
S. E.
, and
Semenov
,
A.
, 1997, “
Engineering of Peptide b-Sheet Nanotapes
,”
J. Mater. Chem.
0959-9428,
7
, pp.
1135
1145
.
37.
Hong
,
Y.
,
Pritzker
,
M. D.
,
Legge
,
R. L.
, and
Chen
,
P.
, 2005, “
Effect of NaCl and Peptide Concentration on the Self-Assembly of an Ionic-Complementary Peptide EAK16-II
,”
Colloids Surf., B
0927-7765,
46
(
3
), pp.
152
161
.
38.
Hong
,
Y.
,
Legge
,
R. L.
,
Zhang
,
S.
, and
Chen
,
P.
, 2003, “
Effect of Amino Acid Sequence and pH on Nanofiber Formation of Self-Assembling Peptides EAK16-II and EAK16-IV
,”
Biomacromolecules
1525-7797,
4
(
5
), pp.
1433
1442
.
39.
Ye
,
Z.
,
Zhang
,
H.
,
Luo
,
H.
,
Wang
,
S.
,
Zhou
,
Q.
,
Du
,
X.
,
Tang
,
C.
,
Chen
,
L.
,
Liu
,
J.
,
Shi
,
Y.-K.
,
Zhang
,
E.-Y.
,
Ellis-Behnke
,
R.
, and
Zhao
,
X.
, 2008, “
Temperature and pH Effects on Biophysical and Morphological Properties of Self-Assembling Peptide RADA16-I
,”
J. Pept. Sci.
1075-2617,
14
(
2
), pp.
152
162
.
40.
Ozbas
,
B.
,
Kretsinger
,
J.
,
Rajagopal
,
K.
,
Schneider
,
J. P.
, and
Pochan
,
D. J.
, 2004, “
Salt-Triggered Peptide Folding and Consequent Self-Assembly Into Hydrogels With Tunable Modulus
,”
Macromolecules
0024-9297,
37
(
19
), pp.
7331
7337
.
41.
Aggeli
,
A.
,
Bell
,
M.
,
Carrick
,
L. M.
,
Fishwick
,
C. W. G.
,
Harding
,
R.
,
Mawer
,
P. J.
,
Radford
,
S. E.
,
Strong
,
A. E.
, and
Boden
,
N.
, 2003, “
pH as a Trigger of Peptide b-Sheet Self-Assembly and Reversible Switching Between Nematic and Isotropic Phases
,”
J. Am. Chem. Soc.
0002-7863,
125
(
32
), pp.
9619
9628
.
42.
Aggeli
,
A.
,
Bell
,
M.
,
Boden
,
N.
,
Carrick
,
L. M.
, and
Strong
,
A. E.
, 2003, “
Self-Assembling Peptide Polyelectrolyte Beta-Sheet Complexes Form Nematic Hydrogels
,”
Angew. Chem., Int. Ed. Engl.
0570-0833,
42
(
45
), pp.
5603
5606
.
43.
Caplan
,
M. R.
,
Moore
,
P. N.
,
Kamm
,
R. D.
, and
Lauffenburger
,
D. A.
, 2000, “
Self-Assembly of a Beta-Sheet Protein Governed by Relief of Electrostatic Repulsion Relative to van der Waals Attraction
,”
Biomacromolecules
1525-7797,
1
(
4
), pp.
627
631
.
44.
Caplan
,
M. R.
,
Schwartzfarb
,
E. M.
,
Zhang
,
S.
,
Kamm
,
R. D.
, and
Lauffenburger
,
D. A.
, 2002, “
Control of Self-Assembling Oligopeptide Matrix Formation Through Systematic Variation of Amino Acid Sequence
,”
Biomaterials
0142-9612,
23
(
1
), pp.
219
227
.
45.
Nesloney
,
C. L.
, and
Kelly
,
J. W.
, 1996, “
Progress Towards Understanding [Beta]-Sheet Structure
,”
Bioorg. Med. Chem.
0968-0896,
4
(
6
), pp.
739
766
.
46.
Jun
,
S.
,
Hong
,
Y.
,
Imamura
,
H.
,
Ha
,
B.-Y.
,
Bechhoefer
,
J.
, and
Chen
,
P.
, 2004, “
Self-Assembly of the Ionic Peptide EAK16: The Effect of Charge Distributions on Self-Assembly
,”
Biophys. J.
0006-3495,
87
(
2
), pp.
1249
1259
.
47.
Nölting
,
B.
, 2005,
Protein Folding Kinetics—Biophysical Methods
, 2nd ed.,
Springer
,
New York
.
48.
Finkelstein
,
A. V.
, and
Ptitsyn
,
O.
, 2002,
Protein Physics: A Course of Lectures
(
Academic
,
San Diego, CA
).
49.
Schneider
,
J. P.
,
Pochan
,
D. J.
,
Ozbas
,
B.
,
Rajagopal
,
K.
,
Pakstis
,
L.
,
Kretsinger
,
J.
, 2002, “
Responsive Hydrogels From the Intramolecular Folding and Self-Assembly of a Designed Peptide
,”
J. Am. Chem. Soc.
0002-7863,
124
(
50
), pp.
15030
15037
.
You do not currently have access to this content.