This paper reports bacterial cellulose composites made by blending chitosan, poly(ethylene glycol) (PEG), and gelatin for potential biomedical application of tissue-engineering scaffold and wound-dressing material. The bacterial cellulose composites were successfully prepared by immersing a wet bacterial cellulose pellicle into chitosan, PEG, or gelatin solutions followed by freeze-drying. The products look like a foam structure. Scanning electron microscopy images show that chitosan molecules penetrated into bacterial cellulose forming a multilayer and a well interconnected porous network structure with a large aspect surface. The morphology of the bacterial cellulose/gelatin scaffold indicates that the gelatin molecules could penetrate well between the individual nanofibers of the bacterial cellulose. Cell adhesion studies for these composites were carried out using 3T3 fibroblast cells. They showed much better biocompatibility than pure bacterial cellulose. Preparation and material characterization of these composites are explained.

1.
Fontana
,
J. D.
,
de Sousa
,
A. M.
,
Fontana
,
C. K.
,
Torriani
,
I. L.
,
Moreschi
,
J. C.
,
Gallotti
,
B. J.
,
de Sousa
,
S. J.
,
Narcisco
,
G. P.
,
Bichara
,
J. A.
, and
Farah
,
L. F.
, 1990, “
Acetobacter Cellulose Pellicles as a Temporary Skin Substitute
,”
Appl. Biochem. Biotechnol.
0273-2289,
24–25
, pp.
253
264
.
2.
Klemm
,
D.
,
Schumann
,
D.
,
Udhardt
,
U.
, and
Marsch
,
S.
, 2001, “
Bacterial Synthesized Cellulose-Artificial Blood Vessels for Microsurgery
,”
Prog. Polym. Sci.
0079-6700,
26
, pp.
1561
1603
.
3.
Svensson
,
A.
,
Nicklasson
,
E.
,
Harrah
,
T.
,
Panilaitis
,
B.
,
Kaplan
,
D. L.
,
Brittberg
,
M.
, and
Gatenholm
,
P.
, 2005, “
Bacterial Cellulose as a Potential Scaffold for Tissue Engineering of Cartilage
,”
Biomaterials
0142-9612,
26
, pp.
419
431
.
4.
Alvarez
,
O. M.
,
Patel
,
M.
,
Booker
,
J.
, and
Markowitz
,
L.
, 2004, “
Effectiveness of Biocellulose Wound Dressing for the Treatment of Chronic Venous Leg Ulcers: Results of a Single Center Randomized Study Involving 24 Patients
,”
Wounds
,
16
, pp.
224
233
.
5.
Pusateri
,
A. E.
,
McCarthy
,
S. J.
,
Gregory
,
K. W.
,
Harris
,
R. A.
,
Cardenas
,
L.
, and
McManus
,
A. T.
, 2003, “
Effect of a Chitosan-Based Hemostatic Dressing on Blood Loss and Survival in a Mode of Severe Venous Hemorrhage and Hepatic Injury in Swine
,”
J. Trauma: Inj., Infect., Crit. Care
1079-6061,
54
, pp.
177
182
.
6.
Azas
,
A. K.
,
Sermsintham
,
N.
,
Chandrkrachang
,
S.
, and
Stevens
,
W. F.
, 2004, “
Chitosan Membrane as a Wound-Healing Dressing: Characterization and Clinical Application
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
69
, pp.
216
224
.
7.
Di Martino
,
A.
,
Sittinger
,
M.
, and
Risbud
,
M. W.
, 2005, “
Chitosan: A Versatile Biopolymer for Orthopaedic Tissue-Engineering
,”
Biomaterials
0142-9612,
26
, pp.
5983
5989
.
8.
Karakeçili
,
A. G.
,
Satriano
,
C.
,
Gümüşderelioğlu
,
M.
, and
Marletta
,
G.
, 2008, “
Enhancement of Fibroblastic Proliferation on Chitosan Surface by Immobilized Epidermal Growth Factor
,”
Acta Biomater.
1742-7061,
4
, pp.
989
995
.
9.
Aksungur
,
P.
,
Sungur
,
A.
,
Unal
,
S.
,
Iskit
,
A. B.
,
Squier
,
C. A.
, and
Senel
,
S.
, 2004, “
Chitosan Delivery System for Treatment of Oral Mucositis: In Vitro and In Vivo Studies
,”
J. Controlled Release
0168-3659,
98
, pp.
269
275
.
10.
Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications
, edited by
J. M.
Harris
(
Plenum
,
New York
, 1992).
11.
Stavisky
,
R. C.
,
Britt
,
J. M.
,
Zuzek
,
A.
,
Truong
,
E.
, and
Bittner
,
G. D.
, 2005, “
Melatonin Enhances the In Vitro and In Vivo Repair of Severed Rat Sciatic Axons
,”
Neurosci. Lett.
0304-3940,
376
, pp.
98
101
.
12.
Borgens
,
R. B.
, and
Bohnert
,
D.
, 2001, “
Rapid Recovery From Spinal Cord Injury After Subcutaneously Administered Polyethylene Glycol
,”
J. Neurosci. Res.
0360-4012,
66
(
6
), pp.
1179
1186
.
13.
Shen
,
Q.
, and
Liu
,
D. S.
, 2007, “
Cellulose/Poly(Ethylene Glycol) Blend and Its Controllable Drug Release Behaviors In Vitro
,”
Carbohydr. Polym.
0144-8617,
69
, pp.
293
298
.
14.
Danuta
,
C.
,
Dariusz
,
W.
,
Wlodzimierz
,
S.
,
Janusz
,
K.
, and
Henryk
,
S.
, 2005, “
Formation of Fibres From Bio-Modified Cellulose Pulp
,”
Fibres Text East. Eur.
,
13
(
6
), pp.
54
63
.
15.
Nicholas
,
H.
, 2006, “
Cellulose for Medical Applications: Past, Present, and Future
,”
BioResources
,
1
(
2
), pp.
270
280
.
16.
Annaclaudia
,
E.
,
Alessandro
,
S.
,
Anna
,
C.
,
Nappo
,
Q. S.
,
Monica
,
L.
,
Luigi
,
A.
, and
Luigi
,
N.
, 2005, “
Response of Intestinal Cells and Macrophages to an Orally Administered Cellulose-PEG Based Polymer as a Potential Treatment for Intractable Edemas
,”
Biomaterials
0142-9612,
19
, pp.
4101
4110
.
17.
Liang
,
S.
,
Wu
,
J.
,
Zhang
,
L.
, and
Xu
,
J.
, 2008, “
High-Strength Cellulose/Poly(Ethylene Glycol) Gels
,”
ChemSusChem
1864-5631,
1
(
6
), pp.
558
63
.
18.
Guidoin
,
R.
,
Marceau
,
D.
,
Rao
,
T. J.
,
King
,
M.
,
Merhi
,
Y.
, and
Roy
,
P. E.
, 1987, “
In Vitro and In Vivo Characterization of an Impervious Polyester Arterial Prosthesis: The Gelseal Triaxial® Graft
,”
Biomaterials
0142-9612,
8
, pp.
433
441
.
19.
Tabata
,
Y.
,
Hijikata
,
S.
, and
Ikada
,
Y.
, 1994, “
Enhanced Vascularization and Tissue Granulation by Basic Fibroblast Growth Factor Impregnated in Gelatin Hydrogels
,”
J. Controlled Release
0168-3659,
31
, pp.
189
199
.
20.
Yaylaoglu
,
M. B.
,
Korkusuz
,
P.
,
Ors
,
U.
,
Korkusuz
,
F.
, and
Hasirci
,
V.
, 1999, “
Development of a Calcium Phosphate-Gelatin Composite as a Bone Substitute and Its Use in Drug Release
,”
Biomaterials
0142-9612,
20
, pp.
711
719
.
21.
Kim
,
J.
,
Jung
,
W.
,
Jo
,
C. H.
,
Shelton
,
J.
, and
Craft
,
W.
, 2008, “
Mechanical Properties of Electro-Active Papers
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
222
, pp.
577
583
.
22.
Yano
,
S.
,
Maeda
,
H.
,
Nakajima
,
M.
,
Hagiwara
,
T.
, and
Sawaguchi
,
T.
, 2008, “
Preparation and Mechanical Properties of Bacterial Cellulose Nanocomposites Loaded With Silica Nanoparticles
,”
Cellulose
,
15
, pp.
111
120
.
23.
Hsieh
,
Y. -C.
,
Yano
,
H.
,
Nogi
,
M.
, and
Eichhorn
,
S. J.
, 2008, “
An Estimation of the Young’s Modulus of Bacterial Cellulose Filaments
,”
Cellulose
,
15
, pp.
507
513
.
24.
Keshk
,
S.
, 2006, “
Physical Properties of Bacterial Cellulose Sheets Produced in Presence of Lignosulfonate
,”
Enzyme Microb. Technol.
0141-0229,
40
, pp.
9
12
.
25.
George
,
J.
,
Ramana
,
K. V.
,
Sabapathy
,
S. N.
,
Jagannath
,
J. H.
, and
Bawa
,
A. S.
, 2005, “
Characterization of Chemically Treated Bacterial (Acetobacter Xylinum) Biopolymer: Some Thermo-Mechanical Properties
,”
Int. J. Biol. Macromol.
0141-8130,
37
, pp.
189
194
.
26.
Watanabe
,
K.
,
Tabuchi
,
M.
,
Morinaga
,
Y.
, and
Yoshinaga
,
F.
, 1998, “
Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture
,”
Cellulose
,
5
, pp.
187
200
.
You do not currently have access to this content.