A new frontier in the development of prosthetic devices is the design of nanoscale systems which replace, augment, or support individual cells. Similar to cells, such devices will require the ability to generate mechanical movement, either for transport or actuation. Here, the development of nanoscale transport systems, which integrate biomolecular motors, is reviewed. To date, close to 100 publications have explored the design of such “molecular shuttles” based on the integration of synthetic molecules, nano- and microparticles, and micropatterned structures with kinesin and myosin motors and their associated cytoskeletal filaments, microtubules, and actin filaments. Tremendous progress has been made in addressing the key challenges of guiding, loading, and controlling the shuttles, providing a foundation for the exploration of applications in medicine and engineering.

1.
Wilson
,
B. S.
,
Finley
,
C. C.
,
Lawson
,
D. T.
,
Wolford
,
R. D.
,
Eddington
,
D. K.
, and
Rabinowitz
,
W. M.
, 1991, “
Better Speech Recognition With Cochlear Implants
,”
Nature (London)
0028-0836,
352
(
6332
), pp.
236
238
.
2.
Wilson
,
B. S.
,
Lawson
,
D. T.
,
Muller
,
J. M.
,
Tyler
,
R. S.
, and
Kiefer
,
J.
, 2003, “
COCHLEAR IMPLANTS: Some Likely Next Steps
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
(
1
), pp.
207
249
.
3.
Bernard
,
T. M.
,
Zavidovique
,
B. Y.
, and
Devos
,
F. J.
, 1993, “
A Programmable Artificial Retina
,”
IEEE J. Solid-State Circuits
0018-9200,
28
(
7
), pp.
789
798
.
4.
Weiland
,
J. D.
, and
Humayun
,
M. S.
, 2006, “
Intraocular Retinal Prosthesis
,”
IEEE Eng. Med. Biol. Mag.
0739-5175,
25
(
5
), pp.
60
66
.
5.
Freitas
,
R. A.
, 2005, “
Current Status of Nanomedicine and Medical Nanorobotics
,”
J. Comput. Theor. Nanosci.
1546-1955,
2
(
1
), pp.
1
25
.
6.
Borlongan
,
C. V.
,
Masuda
,
T.
,
Walker
,
T. A.
,
Maki
,
M.
,
Hara
,
K.
,
Yasuhara
,
T.
,
Matsukawa
,
N.
, and
Emerich
,
D. F.
, 2007, “
Nanotechnology as an Adjunct Tool for Transplanting Engineered Cells and Tissues
,”
Curr. Mol. Med.
,
7
(
7
), pp.
609
618
. 1566-5240
7.
Patel
,
G. M.
,
Patel
,
G. C.
,
Patel
,
R. B.
,
Patel
,
J. K.
, and
Patel
,
M.
, 2006, “
Nanorobot: A Versatile Tool in Nanomedicine
,”
J. Drug Target.
1061-186X,
14
(
2
), pp.
63
67
.
8.
Cavalcanti
,
A.
, and
Freitas
,
R. A.
, 2005, “
Nanorobotics Control Design: A Collective Behavior Approach for Medicine
,”
IEEE Trans. Nanobiosci.
1536-1241,
4
(
2
), pp.
133
140
.
9.
Curtis
,
A. S. G.
, 2005, “
Comment on ‘Nanorobotics Control Design: A Collective Behavior Approach for Medicine’
,”
IEEE Trans. Nanobiosci.
1536-1241,
4
(
2
), pp.
201
202
.
10.
Freitas
,
R. A.
, 2006, “
Pharmacytes: An Ideal Vehicle for Targeted Drug Delivery
,”
J. Nanosci. Nanotechnol.
1533-4880,
6
(
9-10
), pp.
2769
2775
.
11.
Park
,
H. H.
,
Jamison
,
A. C.
, and
Lee
,
T. R.
, 2007, “
Rise of the Nanomachine: The Evolution of a Revolution in Medicine
,”
Nanomedicine
1743-5889,
2
(
4
), pp.
425
439
.
12.
Hogg
,
T.
, 2007, “
Coordinating Microscopic Robots in Viscous Fluids
,”
Auton. Agents Multi-Agent Syst.
1387-2532,
14
(
3
), pp.
271
305
.
13.
Kinosita
,
K.
,
Yasuda
,
R.
,
Noji
,
H.
, and
Adachi
,
K.
, 2000, “
A Rotary Molecular Motor That Can Work at Near 100% Efficiency
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
355
(
1396
), pp.
473
489
.
14.
Suzuki
,
H.
,
Oiwa
,
K.
,
Yamada
,
A.
,
Sakakibara
,
H.
,
Nakayama
,
H.
, and
Mashiko
,
S.
, 1995, “
Linear Arrangement of Motor Protein on a Mechanically Deposited Fluoropolymer Thin Film
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
34
, (
7B
), pp.
3937
3941
.
15.
Hess
,
H.
, and
Vogel
,
V.
, 2001, “
Molecular Shuttles Based on Motor Proteins: Active Transport in Synthetic Environments
,”
Rev. Mol. Biotechnol.
1389-0352,
82
(
1
), pp.
67
85
.
16.
Böhm
,
K. J.
,
Stracke
,
R.
,
Mühlig
,
P.
, and
Unger
,
E.
, 2001, “
Motor Protein-Driven Unidirectional Transport of Micrometer-Sized Cargoes Across Isopolar Microtubule Arrays
,”
Nanotechnology
0957-4484,
12
, pp.
238
244
.
17.
Yokokawa
,
R.
,
Takeuchi
,
S.
,
Kon
,
T.
,
Nishiura
,
M.
,
Sutoh
,
K.
, and
Fujita
,
H.
, 2004, “
Unidirectional Transport of Kinesin-Coated Beads on Microtubules Oriented in a Microfluidic Device
,”
Nano Lett.
1530-6984,
4
(
11
), pp.
2265
2270
.
18.
Doot
,
R. K.
,
Hess
,
H.
, and
Vogel
,
V.
, 2007, “
Engineered Networks of Oriented Microtubule Filaments for Directed Cargo Transport
,”
Soft Matter
1744-683X,
3
(
3
), pp.
349
356
.
19.
Böhm
,
K. J.
, and
Unger
,
E.
, 2004,
Encyclopedia of Nanoscience and Nanotechnology
,
H. S.
Nalwa
, ed.,
American Scientific
,
Stevenson Ranch, CA
, pp.
345
357
.
20.
Diez
,
S.
,
Hellenius
,
J. H.
, and
Howard
,
J.
, 2004,
Nanobiotechnology
,
C. M.
Niemeyer
and
C. A.
Mirkin
, eds.,
Wiley-VCH
,
Weinheim, Germany
.
21.
van den Heuvel
,
M. G. L.
, and
Dekker
,
C.
, 2007, “
Motor Proteins at Work for Nanotechnology
,”
Science
0036-8075,
317
(
5836
), pp.
333
336
.
22.
Bakewell
,
D. J. G.
, and
Nicolau
,
D. V.
, 2007, “
Protein Linear Molecular Motor-Powered Nanodevices
,”
Aust. J. Chem.
0004-9425,
60
(
5
), pp.
314
332
.
23.
Mansson
,
A.
,
Sundberg
,
M.
,
Bunk
,
R.
,
Balaz
,
M.
,
Nicholls
,
I. A.
,
Omling
,
P.
,
Tegenfeldt
,
J. O.
,
Tagerud
,
S.
, and
Montelius
,
L.
, 2005, “
Actin-Based Molecular Motors for Cargo Transportation in Nanotechnology—Potentials and Challenges
,”
IEEE Trans. Adv. Packag.
1521-3323,
28
(
4
), pp.
547
555
.
24.
Hess
,
H.
,
Matzke
,
C. M.
,
Doot
,
R. K.
,
Clemmens
,
J.
,
Bachand
,
G. D.
,
Bunker
,
B. C.
, and
Vogel
,
V.
, 2003, “
Molecular Shuttles Operating Undercover: A New Photolithographic Approach for the Fabrication of Structured Surfaces Supporting Directed Motility
,”
Nano Lett.
1530-6984,
3
(
12
), pp.
1651
1655
.
25.
Dennis
,
J. R.
,
Howard
,
J.
, and
Vogel
,
V.
, 1999, “
Molecular Shuttles: Directed Motion of Microtubules Along Nanoscale Kinesin Tracks
,”
Nanotechnology
0957-4484,
10
, pp.
232
236
.
26.
Hess
,
H.
,
Clemmens
,
J.
,
Qin
,
D.
,
Howard
,
J.
, and
Vogel
,
V.
, 2001, “
Light-Controlled Molecular Shuttles Made from Motor Proteins Carrying Cargo on Engineered Surfaces
,”
Nano Lett.
1530-6984,
1
(
5
), pp.
235
239
.
27.
Hiratsuka
,
Y.
,
Tada
,
T.
,
Oiwa
,
K.
,
Kanayama
,
T.
, and
Uyeda
,
T. Q.
, 2001, “
Controlling the Direction of Kinesin-Driven Microtubule Movements along Microlithographic Tracks
,”
Biophys. J.
0006-3495,
81
(
3
), pp.
1555
1561
.
28.
Jia
,
L.
,
Moorjani
,
S. G.
,
Jackson
,
T. N.
, and
Hancock
,
W. O.
, 2004, “
Microscale Transport and Sorting by Kinesin Molecular Motors
,”
Biomed. Microdevices
1387-2176,
6
(
1
), pp.
67
74
.
29.
Hess
,
H.
,
Clemmens
,
J.
,
Matzke
,
C. M.
,
Bachand
,
G. D.
,
Bunker
,
B. C.
, and
Vogel
,
V.
, 2002, “
Ratchet Patterns Sort Molecular Shuttles
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
75
, pp.
309
313
.
30.
Clemmens
,
J.
,
Hess
,
H.
,
Howard
,
J.
, and
Vogel
,
V.
, 2003, “
Analysis of Microtubule Guidance in Open Microfabricated Channels Coated With the Motor Protein Kinesin
,”
Langmuir
0743-7463,
19
, pp.
1738
1744
.
31.
Clemmens
,
J.
,
Hess
,
H.
,
Doot
,
R.
,
Matzke
,
C. M.
,
Bachand
,
G. D.
, and
Vogel
,
V.
, 2004, “
Motor-Protein “Roundabouts:” Microtubules Moving on Kinesin-Coated Tracks Through Engineered Networks
,”
Lab Chip
1473-0197,
4
, pp.
83
86
.
32.
Bunk
,
R.
,
Sundberg
,
M.
,
Mansson
,
A.
,
Nicholls
,
I. A.
,
Omling
,
P.
,
Tagerud
,
S.
, and
Montelius
,
L.
, 2005, “
Guiding Motor-Propelled Molecules With Nanoscale Precision Through Silanized Bi-Channel Structures
,”
Nanotechnology
0957-4484,
16
(
6
), pp.
710
717
.
33.
Lin
,
C. -T.
,
Kao
,
M. -T.
,
Kurabayashi
,
K.
, and
Meyhöfer
,
E.
, 2006, “
Efficient Designs for Powering Microscale Devices With Nanoscale Biomolecular Motors
,”
Small
1613-6810,
2
(
2
), pp.
281
287
.
34.
van den Heuvel
,
M. G.
,
Butcher
,
C. T.
,
Smeets
,
R. M.
,
Diez
,
S.
, and
Dekker
,
C.
, 2005, “
High Rectifying Efficiencies of Microtubule Motility on Kinesin-Coated Gold Nanostructures
,”
Nano Lett.
1530-6984,
5
(
6
), pp.
1117
1122
.
35.
Yokokawa
,
R.
,
Yoshida
,
Y.
,
Takeuchi
,
S.
,
Kon
,
T.
, and
Fujita
,
H.
, 2006, “
Unidirectional Transport of a Bead on a Single Microtubule Immobilized in a Submicrometre Channel
,”
Nanotechnology
0957-4484,
17
, pp.
289
294
.
36.
Huang
,
Y. M.
,
Uppalapati
,
M.
,
Hancock
,
W. O.
, and
Jackson
,
T. N.
, 2005, “
Microfabricated Capped Channels for Biomolecular Motor-Based Transport
,”
IEEE Trans. Adv. Packag.
1521-3323,
28
(
4
), pp.
564
570
.
37.
Huang
,
Y. M.
,
Uppalapati
,
M.
,
Hancock
,
W. O.
, and
Jackson
,
T. N.
, 2007, “
Microtubule Transport, Concentration and Alignment in Enclosed Microfluidic Channels
,”
Biomed. Microdevices
1387-2176,
9
(
2
), pp.
175
184
.
38.
van den Heuvel
,
M. G. L.
,
De Graaff
,
M. P.
, and
Dekker
,
C.
, 2006, “
Molecular Sorting by Electrical Steering of Microtubules in Kinesin-Coated Channels
,”
Science
0036-8075,
312
(
5775
), pp.
910
914
.
39.
Turner
,
D. C.
,
Chang
,
C.
,
Fang
,
K.
,
Brandow
,
S. L.
, and
Murphy
,
D. B.
, 1995, “
Selective Adhesion of Functional Microtubules to Patterned Silane Surfaces
,”
Biophys. J.
0006-3495,
69
, pp.
2782
2789
.
40.
Muthukrishnan
,
G.
,
Roberts
,
C. A.
,
Chen
,
Y. C.
,
Zahn
,
J. D.
, and
Hancock
,
W. O.
, 2004, “
Patterning Surface-Bound Microtubules Through Reversible DNA Hybridization
,”
Nano Lett.
1530-6984,
4
(
11
), pp.
2127
2132
.
41.
Lipscomb
,
R. C.
,
Clemmens
,
J.
,
Hanein
,
Y.
,
Holl
,
M. R.
,
Vogel
,
V.
,
Ratner
,
B. D.
,
Denton
,
D. D.
, and
Böhringer
,
K. F.
, 2002, “
Controlled Microtubules Transport on Patterned Non-adhesive Surfaces
,”
Second International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, IEEE
, Madison, WI, pp.
21
26
.
42.
Clemmens
,
J.
,
Hess
,
H.
,
Lipscomb
,
R.
,
Hanein
,
Y.
,
Boehringer
,
K. F.
,
Matzke
,
C. M.
,
Bachand
,
G. D.
,
Bunker
,
B. C.
, and
Vogel
,
V.
, 2003, “
Mechanisms of Microtubule Guiding on Microfabricated Kinesin-Coated Surfaces: Chemical and Topographic Surface Patterns
,”
Langmuir
0743-7463,
19
(
26
), pp.
10967
10974
.
43.
Reuther
,
C.
,
Hajdo
,
L.
,
Tucker
,
R.
,
Kasprzak
,
A. A.
, and
Diez
,
S.
, 2006, “
Biotemplated Nanopatterning of Planar Surfaces With Molecular Motors
,”
Nano Lett.
1530-6984,
6
(
10
), pp.
2177
2183
.
44.
Suzuki
,
H.
,
Yamada
,
A.
,
Oiwa
,
K.
,
Nakayama
,
H.
, and
Mashiko
,
S.
, 1997, “
Control of Actin Moving Trajectory by Patterned Poly(Methylmethacrylate) Tracks
,”
Biophys. J.
0006-3495,
72
, pp.
1997
2001
.
45.
Nicolau
,
D. V.
,
Solana
,
G.
,
Kekic
,
M.
,
Fulga
,
F.
,
Mahanivong
,
C.
,
Wright
,
J.
, and
dosRemedios
,
C. G.
, 2007, “
Surface Hydrophobicity Modulates the Operation of Actomyosin-Based Dynamic Nanodevices
,”
Langmuir
0743-7463,
23
(
21
), pp.
10846
10854
.
46.
Nicolau
,
D. V.
,
Suzuki
,
H.
,
Mashiko
,
S.
,
Taguchi
,
T.
, and
Yoshikawa
,
S.
, 1999, “
Actin Motion on Microlithographically Functionalized Myosin Surfaces and Tracks
,”
Biophys. J.
0006-3495,
77
(
2
), pp.
1126
1134
.
47.
Sundberg
,
M.
,
Balaz
,
M.
,
Bunk
,
R.
,
Rosengren-Holmberg
,
J. P.
,
Montelius
,
L.
,
Nicholls
,
I. A.
,
Omling
,
P.
,
Tagerud
,
S.
, and
Mansson
,
A.
, 2006, “
Selective Spatial Localization of Actomyosin Motor Function by Chemical Surface Patterning
,”
Langmuir
0743-7463,
22
(
17
), pp.
7302
7312
.
48.
Sundberg
,
M.
,
Bunk
,
R.
,
Albet-Torres
,
N.
,
Kvennefors
,
A.
,
Persson
,
F.
,
Montelius
,
L.
,
Nicholls
,
I. A.
,
Ghatnekar-Nilsson
,
S.
,
Omling
,
P.
,
Tagerud
,
S.
, and
Mansson
,
A.
, 2006, “
Actin Filament Guidance on a Chip: Toward High-Throughput Assays and Lab-on-a-Chip Applications
,”
Langmuir
0743-7463,
22
(
17
), pp.
7286
7295
.
49.
Manandhar
,
P.
,
Huang
,
L.
,
Grubich
,
J. R.
,
Hutchinson
,
J. W.
,
Chase
,
P. B.
, and
Hong
,
S. H.
, 2005, “
Highly Selective Directed Assembly of Functional Actomyosin on Au Surfaces
,”
Langmuir
0743-7463,
21
(
8
), pp.
3213
3216
.
50.
Interliggi
,
K. A.
,
Zeile
,
W. L.
,
Ciftan-Hens
,
S. A.
,
McGuire
,
G. E.
,
Purich
,
D. L.
, and
Dickinson
,
R. B.
, 2007, “
Guidance of Actin Filament Elongation on Filament-Binding Tracks
,”
Langmuir
0743-7463,
23
(
23
), pp.
11911
11916
.
51.
Moorjani
,
S. G.
,
Jia
,
L.
,
Jackson
,
T. N.
, and
Hancock
,
W. O.
, 2003, “
Lithographically Patterned Channels Spatially Segregate Kinesin Motor Activity and Effectively Guide Microtubule Movements
,”
Nano Lett.
1530-6984,
3
(
5
), pp.
633
637
.
52.
Cheng
,
L. J.
,
Kao
,
M. T.
,
Meyhofer
,
E.
, and
Guo
,
L. J.
, 2005, “
Highly Efficient Guiding of Microtubule Transport With Imprinted CYTOP Nanotracks
,”
Small
1613-6810,
1
(
4
), pp.
409
414
.
53.
Boal
,
A. K.
,
Bauer
,
J. M.
,
Rivera
,
S. B.
,
Manley
,
R. G.
,
Manginell
,
R. P.
,
Bachand
,
G. D.
, and
Bunker
,
B. C.
, 2004, “
Monolayer Engineered Microchannels for Motor Protein Transport Platforms
,”
Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.)
0032-3934,
45
(
1
), pp.
96
97
.
54.
Bunk
,
R.
,
Klinth
,
J.
,
Montelius
,
L.
,
Nicholls
,
I. A.
,
Omling
,
P.
,
Tagerud
,
S.
, and
Mansson
,
A.
, 2003, “
Actomyosin Motility on Nanostructured Surfaces
,”
Biochem. Biophys. Res. Commun.
0006-291X,
301
(
3
), pp.
783
788
.
55.
Bunk
,
R.
,
Klinth
,
J.
,
Rosengren
,
J.
,
Nicholls
,
I.
,
Tagerud
,
S.
,
Omling
,
P.
,
Mansson
,
A.
, and
Montelius
,
L.
, 2003, “
Towards a ‘Nano-Traffic’ System Powered by Molecular Motors
,”
Microelectron. Eng.
0167-9317,
67-68
, pp.
899
904
.
56.
Jaber
,
J. A.
,
Chase
,
P. B.
, and
Schlenoff
,
J. B.
, 2003, “
Actomyosin-Driven Motility on Patterned Polyelectrolyte Mono- and Multilayers
,”
Nano Lett.
1530-6984,
3
(
11
), pp.
1505
1509
.
57.
Mahanivong
,
C.
,
Wright
,
J. P.
,
Kekic
,
M.
,
Pham
,
D. K.
,
dos Remedios
,
C.
, and
Nicolau
,
D. V.
, 2002, “
Manipulation of the Motility of Protein Molecular Motors on Microfabricated Substrates
,”
Biomed. Microdevices
1387-2176,
4
(
2
), pp.
111
116
.
58.
Wright
,
J.
,
Pham
,
D.
,
Mahanivong
,
C.
,
Nicolau
,
D. V.
,
Kekic
,
M.
, and
dos Remedios
,
C. G.
, 2002, “
Micropatterning of Myosin on O-Acryloyl Acetophenone Oxime (AAPO), Layered With Bovine Serum Albumin (BSA)
,”
Biomed. Microdevices
1387-2176,
4
(
3
), pp.
205
211
.
59.
Fritzsche
,
W.
,
Bohm
,
K.
,
Unger
,
E.
, and
Kohler
,
J. M.
, 1998, “
Making Electrical Contact to Single Molecules
,”
Nanotechnology
0957-4484,
9
(
3
), pp.
177
183
.
60.
Limberis
,
L.
, and
Stewart
,
R. J.
, 2001, “
Polarized Alignment and Surface Immobilization of Microtubules for Kinesin-Powered Nanodevices
,”
Nano Lett.
1530-6984,
1
(
5
), pp.
277
280
.
61.
Ostap
,
E. M.
,
Yanagida
,
T.
, and
Thomas
,
D. D.
, 1992, “
Orientational Distribution of Spin-Labeled Actin Oriented by Flow
,”
Biophys. J.
0006-3495,
63
(
4
), pp.
966
975
.
62.
Brown
,
T. B.
, and
Hancock
,
W. O.
, 2002, “
A Polarized Microtubule Array for Kinesin-Powered Nanoscale Assembly and Force Generation
,”
Nano Lett.
1530-6984,
2
(
10
), pp.
1131
1135
.
63.
Stracke
,
P.
,
Bohm
,
K. J.
,
Burgold
,
J.
,
Schacht
,
H. J.
, and
Unger
,
E.
, 2000, “
Physical and Technical Parameters Determining the Functioning of a Kinesin-Based Cell-Free Motor System
,”
Nanotechnology
0957-4484,
11
(
2
), pp.
52
56
.
64.
Limberis
,
L.
, and
Stewart
,
R. J.
, 2000, “
Toward Kinesin-Powered Microdevices
,”
Nanotechnology
0957-4484,
11
(
2
), pp.
47
51
.
65.
Kim
,
T.
,
Kao
,
M. T.
,
Meyhofer
,
E.
, and
Hasselbrink
,
E. F.
, 2007, “
Biomolecular Motor-Driven Microtubule Translocation in the Presence of Shear Flow: Analysis of Redirection Behaviours
,”
Nanotechnology
0957-4484,
18
(
2
), p.
025101
.
66.
Bohm
,
K. J.
,
Beeg
,
J.
,
Meyer zu Horste
,
G.
,
Stracke
,
R.
, and
Unger
,
E.
, 2005, “
Kinesin-Driven Sorting Machine on Large-Scale Microtubule Arrays
,”
IEEE Trans. Adv. Packag.
1521-3323,
28
(
4
), pp.
571
576
.
67.
Kim
,
T.
,
Kao
,
M. T.
,
Hasselbrink
,
E. F.
, and
Meyhofer
,
E.
, 2007, “
Active Alignment of Microtubules With Electric Fields
,”
Nano Lett.
1530-6984,
7
(
1
), pp.
211
217
.
68.
Riveline
,
D.
,
Ott
,
A.
,
Julicher
,
F.
,
Winkelmann
,
D. A.
,
Cardoso
,
O.
,
Lacapere
,
J. J.
,
Magnusdottir
,
S.
,
Viovy
,
J. L.
,
Gorre-Talini
,
L.
, and
Prost
,
J.
, 1998, “
Acting on Actin: The Electric Motility Assay
,”
Eur. Biophys. J.
0175-7571,
27
(
4
), pp.
403
408
.
69.
Stracke
,
R.
,
Bohm
,
K. J.
,
Wollweber
,
L.
,
Tuszynski
,
J. A.
, and
Unger
,
E.
, 2002, “
Analysis of the Migration Behaviour of Single Microtubules in Electric Fields
,”
Biochem. Biophys. Res. Commun.
0006-291X,
293
(
1
), pp.
602
609
.
70.
Asokan
,
S. B.
,
Jawerth
,
L.
,
Carroll
,
R. L.
,
Cheney
,
R. E.
,
Washburn
,
S.
, and
Superfine
,
R.
, 2003, “
Two-Dimensional Manipulation and Orientation of Actin-Myosin Systems With Dielectrophoresis
,”
Nano Lett.
1530-6984,
3
(
4
), pp.
431
437
.
71.
Huang
,
L.
,
Manandhar
,
P.
,
Byun
,
K. E.
,
Chase
,
P. B.
, and
Hong
,
S.
, 2006, “
Selective Assembly and Alignment of Actin Filaments With Desired Polarity on Solid Substrates
,”
Langmuir
0743-7463,
22
(
21
), pp.
8635
8638
.
72.
Bras
,
W.
,
Diakun
,
G. P.
,
Diaz
,
J. F.
,
Maret
,
G.
,
Kramer
,
H.
,
Bordas
,
J.
, and
Medrano
,
F. J.
, 1998, “
The Susceptibility of Pure Tubulin to High Magnetic Fields: A Magnetic Birefringence and X-Ray Fiber Diffraction Study
,”
Biophys. J.
0006-3495,
74
(
3
), pp.
1509
1521
.
73.
Platt
,
M.
,
Hancock
,
W. O.
,
Muthukrishnan
,
G.
, and
Williams
,
M. E.
, 2005, “
Millimeter Scale Alignment of Magnetic Nanoparticle Functionalized Microtubules in Magnetic Fields
,”
J. Am. Chem. Soc.
0002-7863,
127
(
45
), pp.
15686
15687
.
74.
Hutchins
,
B. M.
,
Hancock
,
W. O.
, and
Williams
,
M. E.
, 2006, “
Magnet Assisted Fabrication of Microtubule Arrays
,”
Phys. Chem. Chem. Phys.
1463-9076,
8
(
30
), pp.
3507
3509
.
75.
Hutchins
,
B. M.
,
Platt
,
M.
,
Hancock
,
W. O.
, and
Williams
,
M. E.
, 2007, “
Directing Transport of CoFe2O4-Functionalized Microtubules With Magnetic Fields
,”
Small
1613-6810,
3
(
1
), pp.
126
131
.
76.
Nitta
,
T.
, and
Hess
,
H.
, 2005, “
Dispersion in Active Transport by Kinesin-Powered Molecular Shuttles
,”
Nano Lett.
1530-6984,
5
(
7
), pp.
1337
1342
.
77.
Nitta
,
T.
,
Tanahashi
,
A.
,
Hirano
,
M.
, and
Hess
,
H.
, 2006, “
Simulating Molecular Shuttle Movements: Towards Computer-Aided Design of Nanoscale Transport Systems
,”
Lab Chip
1473-0197,
6
(
7
), pp.
881
885
.
78.
Terada
,
S.
, and
Hirokawa
,
N.
, 2000, “
Moving on to the Cargo Problem of Microtubule-Dependent Motors in Neurons
,”
Curr. Opin. Neurobiol.
0959-4388,
10
(
5
), pp.
566
573
.
79.
Yamasaki
,
H.
, and
Nakayama
,
H.
, 1996, “
Fluctuation Analysis of Myosin-Coated Bead Movement Along Actin Bundles of Nitella
,”
Biochem. Biophys. Res. Commun.
0006-291X,
221
(
3
), pp.
831
836
.
80.
Nakayama
,
H.
,
Yamaga
,
T.
, and
Kunioka
,
Y.
, 1998, “
Fine Profile of Actomyosin Motility Fluctuation Revealed by Using 40-nm Probe Beads
,”
Biochem. Biophys. Res. Commun.
0006-291X,
246
(
1
), pp.
261
266
.
81.
Yildiz
,
A.
,
Forkey
,
J. N.
,
McKinney
,
S. A.
,
Ha
,
T.
,
Goldman
,
Y. E.
, and
Selvin
,
P. R.
, 2003, “
Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging With 1.5-nm Localization
,”
Science
0036-8075,
300
(
5628
), pp.
2061
2065
.
82.
Yildiz
,
A.
,
Tomishige
,
M.
,
Vale
,
R. D.
, and
Selvin
,
P. R.
, 2004, “
Kinesin Walks Hand-Over-Hand
,”
Science
0036-8075,
303
(
5658
), pp.
676
678
.
83.
Klumpp
,
S.
, and
Lipowsky
,
R.
, 2005, “
Cooperative Cargo Transport by Several Molecular Motors
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
(
48
), pp.
17284
17289
.
84.
Lipowsky
,
R.
,
Chai
,
Y.
,
Klumpp
,
S.
,
Liepelt
,
S.
, and
Muller
,
M. J. I.
, 2006, “
Molecular Motor Traffic: From Biological Nanomachines to Macroscopic Transport
,”
Physica A
0378-4371,
372
(
1
), pp.
34
51
.
85.
Yokokawa
,
R.
,
Takeuchi
,
S.
,
Kon
,
T.
,
Ohkura
,
R.
,
Edamatsu
,
M.
,
Sutoh
,
K.
, and
Fujita
,
H.
, 2003, “
Transportation of Micromachined Structures by Biomolecular Linear Motors
,”
The 16th IEEE Annual International Conference on Micro Electro Mechanical Systems, MEMS-03
, Kyoto,
S.
Takeuchi
, ed., pp.
8
11
.
86.
Muthukrishnan
,
G.
,
Hutchins
,
B. M.
,
Williams
,
M. E.
, and
Hancock
,
W. O.
, 2006, “
Transport of Semiconductor Nanocrystals by Kinesin Molecular Motors
,”
Small
1613-6810,
2
(
5
), pp.
626
630
.
87.
Yokokawa
,
R.
,
Takeuchi
,
S.
,
Kon
,
T.
,
Nishiura
,
M.
,
Ohkura
,
R.
,
Sutoh
,
K.
, and
Fujita
,
H.
, 2004, “
Hybrid Nanotransport System by Biomolecular Linear Motors
,”
J. Microelectromech. Syst.
1057-7157,
13
(
4
), pp.
612
619
.
88.
Wong
,
J.
,
Chilkoti
,
A.
, and
Moy
,
V. T.
, 1999, “
Direct Force Measurements of the Streptavidin-Biotin Interaction
,”
Biomol. Eng.
1389-0344,
16
(
1–4
), pp.
45
55
.
89.
Bachand
,
G. D.
,
Rivera
,
S. B.
,
Boal
,
A. K.
,
Gaudioso
,
J.
,
Liu
,
J.
, and
Bunker
,
B. C.
, 2004, “
Assembly and Transport of Nanocrystal CdSe Quantum Dot Nanocomposites Using Microtubules and Kinesin Motor Proteins
,”
Nano Lett.
1530-6984,
4
(
5
), pp.
817
821
.
90.
Patolsky
,
F.
,
Weizmann
,
Y.
, and
Willner
,
I.
, 2004, “
Actin-Based Metallic Nanowires as Bio-Nanotransporters
,”
Nature Mater.
1476-1122,
3
(
10
), pp.
692
695
.
91.
Brunner
,
C.
,
Wahnes
,
C.
, and
Vogel
,
V.
, 2007, “
Cargo Pick-Up From Engineered Loading Stations by Kinesin Driven Molecular Shuttles
,”
Lab Chip
1473-0197,
7
(
10
), pp.
1263
1271
.
92.
Bachand
,
M.
,
Trent
,
A. M.
,
Bunker
,
B. C.
, and
Bachand
,
G. D.
, 2005, “
Physical Factors Affecting Kinesin-Based Transport of Synthetic Nanoparticle Cargo
,”
J. Nanosci. Nanotechnol.
1533-4880,
5
(
5
), pp.
718
722
.
93.
Kerssemakers
,
J.
,
Howard
,
J.
,
Hess
,
H.
, and
Diez
,
S.
, 2006, “
The Distance That Kinesin Holds Its Cargo From the Microtubule Surface Measured by Fluorescence-Interference-Contrast Microscopy
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
43
), pp.
15812
15817
.
94.
Hess
,
H.
,
Clemmens
,
J.
,
Brunner
,
C.
,
Doot
,
R.
,
Luna
,
S.
,
Ernst
,
K. -H.
, and
Vogel
,
V.
, 2005, “
Molecular Self-Assembly of “Nanowires” and “Nanospools” Using Active Transport
,”
Nano Lett.
1530-6984,
5
(
4
), pp.
629
633
.
95.
Boal
,
A. K.
,
Bachand
,
G. D.
,
Rivera
,
S. B.
, and
Bunker
,
B. C.
, 2006, “
Interactions Between Cargo-Carrying Biomolecular Shuttles
,”
Nanotechnology
0957-4484,
17
(
2
), pp.
349
354
.
96.
Hess
,
H.
, 2006, “
Self-Assembly Driven by Molecular Motors
,”
Soft Matter
1744-683X,
2
(
8
), pp.
669
677
.
97.
Sase
,
I.
,
Miyata
,
H.
,
Ishiwata
,
S.
, and
Kinosita
,
K.
, 1997, “
Axial Rotation of Sliding Actin Filaments Revealed by Single-Fluorophore Imaging
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
94
(
11
), pp.
5646
5650
.
98.
Suzuki
,
N.
,
Miyata
,
H.
,
Ishiwata
,
S.
, and
Kinoshita
,
K.
, 1996, “
Preparation of Bead-Tailed Actin Filaments: Estimation of the Torque Produced by the Sliding Force in an In Vitro Motility Assay
,”
Biophys. J.
0006-3495,
70
(
1
), pp.
401
408
.
99.
Mansson
,
A.
,
Sundberg
,
M.
,
Balaz
,
M.
,
Bunk
,
R.
,
Nicholls
,
I. A.
,
Omling
,
P.
,
Tagerud
,
S.
, and
Montelius
,
L.
, 2004, “
In Vitro Sliding of Actin Filaments Labelled With Single Quantum Dots
,”
Biochem. Biophys. Res. Commun.
0006-291X,
314
(
2
), pp.
529
534
.
100.
Diez
,
S.
,
Reuther
,
C.
,
Dinu
,
C.
,
Seidel
,
R.
,
Mertig
,
M.
,
Pompe
,
W.
, and
Howard
,
J.
, 2003, “
Stretching and Transporting DNA Molecules Using Motor Proteins
,”
Nano Lett.
1530-6984,
3
(
9
), pp.
1251
1254
.
101.
Dinu
,
C. Z.
,
Opitz
,
J.
,
Pompe
,
W.
,
Howard
,
J.
,
Mertig
,
M.
, and
Diez
,
S.
, 2006, “
Parallel Manipulation of Bifunctional DNA Molecules on Structured Surfaces Using Kinesin-Driven Microtubules
,”
Small
1613-6810,
2
(
8–9
), pp.
1090
1098
.
102.
Taira
,
S.
,
Du
,
Y. Z.
,
Hiratsuka
,
Y.
,
Konishi
,
K.
,
Kubo
,
T.
,
Uyeda
,
T. Q. P.
,
Yumoto
,
N.
, and
Kodaka
,
M.
, 2006, “
Selective Detection and Transport of Fully Matched DNA by DNA-Loaded Microtubule and Kinesin Motor Protein
,”
Biotechnol. Bioeng.
0006-3592,
95
(
3
), pp.
533
538
.
103.
Hirabayashi
,
M.
,
Taira
,
S.
,
Kobayashi
,
S.
,
Konishi
,
K.
,
Katoh
,
K.
,
Hiratsuka
,
Y.
,
Kodaka
,
M.
,
Uyeda
,
T. Q. P.
,
Yumoto
,
N.
, and
Kubo
,
T.
, 2006, “
Malachite Green-Conjugated Microtubules as Mobile Bioprobes Selective for Malachite Green Aptamers With Capturing/Releasing Ability
,”
Biotechnol. Bioeng.
0006-3592,
94
(
3
), pp.
473
480
.
104.
Kato
,
K. A.
,
Goto
,
R.
,
Katoh
,
K.
, and
Shibakami
,
M.
, 2005, “
Microtubule-Cyclodextrin Conjugate: Functionalization of Motile Filament With Molecular Inclusion Ability
,”
Biosci., Biotechnol., Biochem.
0916-8451,
69
(
3
), pp.
646
648
.
105.
Martin
,
B. D.
,
Soto
,
C. M.
,
Blum
,
A. S.
,
Sapsford
,
K. E.
,
Whitley
,
J. L.
,
Johnson
,
J. E.
,
Chatterji
,
A.
, and
Ratna
,
B. R.
, 2006, “
An Engineered Virus as a Bright Fluorescent Tag and Scaffold for Cargo Proteins—Capture and Transport by Gliding Microtubules
,”
J. Nanosci. Nanotechnol.
1533-4880,
6
(
8
), pp.
2451
2460
.
106.
Bachand
,
G. D.
,
Rivera
,
S. B.
,
Carroll-Portillo
,
A.
,
Hess
,
H.
, and
Bachand
,
M.
, 2006, “
Active Capture and Transport of Virus Particles Using a Biomolecular Motor-Driven, Nanoscale Antibody Sandwich Assay
,”
Small
1613-6810,
2
(
3
), pp.
381
385
.
107.
Ramachandran
,
S.
,
Ernst
,
K. -H.
,
Bachand
,
G. D.
,
Vogel
,
V.
, and
Hess
,
H.
, 2006, “
Selective Loading of Kinesin-Powered Molecular Shuttles With Protein Cargo and Its Application to Biosensing
,”
Small
1613-6810,
2
(
3
), pp.
330
334
.
108.
Raab
,
M.
, and
Hancock
,
W. O.
, 2008, “
Transport and Detection of Unlabeled Nucleotide Targets by Microtubules Functionalized With Molecular Beacons
,”
Biotechnol. Bioeng.
0006-3592,
99
(
4
), pp.
764
773
.
109.
Taira
,
S.
,
Du
,
Y. Z.
,
Hiratsuka
,
Y.
,
Uyeda
,
T. Q. P.
,
Yumoto
,
N.
, and
Kodaka
,
M.
, 2008, “
Loading and Unloading of Molecular Cargo by DNA-Conjugated Microtubule
,”
Biotechnol. Bioeng.
0006-3592,
99
(
3
), pp.
734
739
.
110.
Böhm
,
K. J.
,
Stracke
,
R.
, and
Unger
,
E.
, 2000, “
Speeding up Kinesin-Driven Microtubule Gliding In Vitro by Variation of Cofactor Composition and Physicochemical Parameters
,”
Cell Biol. Int.
1065-6995,
24
(
6
), pp.
335
341
.
111.
Kawaguchi
,
K.
, and
Ishiwata
,
S.
, 2000, “
Temperature Dependence of Force, Velocity, and Processivity of Single Kinesin Molecules
,”
Biochem. Biophys. Res. Commun.
0006-291X,
272
(
3
), pp.
895
899
.
112.
Böhm
,
K. J.
,
Stracke
,
R.
,
Baum
,
M.
,
Zieren
,
M.
, and
Unger
,
E.
, 2000, “
Effect of Temperature on Kinesin-Driven Microtubule Gliding and Kinesin ATPase Activity
,”
FEBS Lett.
0014-5793,
466
(
1
), pp.
59
62
.
113.
Rivera
,
S. B.
,
Koch
,
S. J.
,
Bauer
,
J. M.
,
Edwards
,
J. M.
, and
Bachand
,
G. D.
, 2007, “
Temperature Dependent Properties of a Kinesin-3 Motor Protein From Thermomyces Lanuginosus
,”
Fungal Genet. Biol.
1087-1845,
44
(
11
), pp.
1170
1179
.
114.
Kawaguchi
,
K.
, and
Ishiwata
,
S.
, 2001, “
Thermal Activation of Single Kinesin Molecules With Temperature Pulse Microscopy
,”
Cell Motil. Cytoskeleton
0886-1544,
49
(
1
), pp.
41
47
.
115.
Wang
,
F.
,
Chen
,
L.
,
Arcucci
,
O.
,
Harvey
,
E. V.
,
Bowers
,
B.
,
Xu
,
Y.
,
Hammer
,
J. A.
, 3rd
, and
Sellers
,
J. R.
, 2000, “
Effect of ADP and Ionic Strength on the Kinetic and Motile Properties of Recombinant Mouse Myosin V
,”
J. Biol. Chem.
0021-9258,
275
(
6
), pp.
4329
4335
.
116.
Kellermayer
,
M. S. Z.
, and
Pollack
,
G. H.
, 1996, “
Rescue of In Vitro Actin Motility Halted at High Ionic Strength by Reduction of ATP to Submicromolar Levels
,”
Biochim. Biophys. Acta
0006-3002,
1277
(
1–2
), pp.
107
114
.
117.
Kawai
,
M.
,
Kido
,
T.
,
Vogel
,
M.
,
Fink
,
R. H. A.
, and
Ishiwata
,
S.
, 2006, “
Temperature Change Does Not Affect Force Between Regulated Actin Filaments and Heavy Meromyosin in Single-Molecule Experiments
,”
J. Physiol. (London)
0022-3751,
574
(
3
), pp.
877
887
.
118.
Liang
,
B.
,
Chen
,
Y.
,
Wang
,
C. K.
,
Luo
,
Z. X.
,
Regnier
,
M.
,
Gordon
,
A. M.
, and
Chase
,
P. B.
, 2003, “
Ca2+Regulation of Rabbit Skeletal Muscle Thin Filament Sliding: Role of Cross-Bridge Number
,”
Biophys. J.
0006-3495,
85
(
3
), pp.
1775
1786
.
119.
Konishi
,
K.
,
Uyeda
,
T. Q. P.
, and
Kubo
,
T.
, 2006, “
Genetic Engineering of a Ca2+Dependent Chemical Switch Into the Linear Biomotor Kinesin
,”
FEBS Lett.
0014-5793,
580
(
15
), pp.
3589
3594
.
120.
Miyamoto
,
Y.
,
Muto
,
E.
,
Mashimo
,
T.
,
Iwane
,
A. H.
,
Yoshiya
,
I.
, and
Yanagida
,
T.
, 2000, “
Direct Inhibition of Microtubule-Based Kinesin Motility by Local Anesthetics
,”
Biophys. J.
0006-3495,
78
(
2
), pp.
940
949
.
121.
Tsuda
,
Y.
,
Mashimo
,
T.
,
Yoshiya
,
I.
,
Kaseda
,
K.
,
Harada
,
Y.
, and
Yanagida
,
T.
, 1996, “
Direct Inhibition of the Actomyosin Motility by Local Anesthetics In Vitro
,”
Biophys. J.
0006-3495,
71
(
5
), pp.
2733
2741
.
122.
Martinez-Neira
,
R.
,
Kekic
,
M.
,
Nicolau
,
D.
, and
dos Remedios
,
C. G.
, 2005, “
A novel Biosensor for Mercuric Ions Based on Motor Proteins
,”
Biosens. Bioelectron.
0956-5663,
20
(
7
), pp.
1428
1432
.
123.
Gast
,
F. U.
,
Dittrich
,
P. S.
,
Schwille
,
P.
,
Weigel
,
M.
,
Mertig
,
M.
,
Opitz
,
J.
,
Queitsch
,
U.
,
Diez
,
S.
,
Lincoln
,
B.
,
Wottawah
,
F.
,
Schinkinger
,
S.
,
Guck
,
J.
,
Kas
,
J.
,
Smolinski
,
J.
,
Salchert
,
K.
,
Werner
,
C.
,
Duschl
,
C.
,
Jager
,
M. S.
,
Uhlig
,
K.
,
Geggier
,
P.
, and
Howitz
,
S.
, 2006, “
The Microscopy Cell (MicCell), A Versatile Modular Flowthrough System for Cell Biology, Biomaterial Research, and Nanotechnology
,”
Microfluid. Nanofluid.
1613-4982,
2
(
1
), pp.
21
36
.
124.
Kato
,
H.
,
Nishizaka
,
T.
,
Iga
,
T.
,
Kinosita
,
K.
, Jr.
, and
Ishiwata
,
S.
, 1999, “
Imaging of Thermal Activation of Actomyosin Motors
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
(
17
), pp.
9602
9606
.
125.
Mihajlovic
,
G.
,
Brunet
,
N. M.
,
Trbovic
,
J.
,
Xiong
,
P.
,
von Molnar
,
S.
, and
Chase
,
P. B.
, 2004, “
All-Electrical Switching and Control Mechanism for Actomyosin-Powered Nanoactuators
,”
Appl. Phys. Lett.
0003-6951,
85
(
6
), pp.
1060
1062
.
126.
Ionov
,
L.
,
Stamm
,
M.
, and
Diez
,
S.
, 2006, “
Reversible Switching of Microtubule Motility Using Thermoresponsive Polymer Surfaces
,”
Nano Lett.
1530-6984,
6
(
9
), pp.
1982
1987
.
127.
van den Heuvel
,
M. G. L.
,
Butcher
,
C. T.
,
Lemay
,
S. G.
,
Diez
,
S.
, and
Dekker
,
C.
, 2005, “
Electrical Docking of Microtubules for Kinesin-Driven Motility in Nanostructures
,”
Nano Lett.
1530-6984,
5
(
2
), pp.
235
241
.
128.
Martin
,
B. D.
,
Velea
,
L. M.
,
Soto
,
C. M.
,
Whitaker
,
C. M.
,
Gaber
,
B. P.
, and
Ratna
,
B.
, 2007, “
Reversible Control of Kinesin Activity and Microtubule Gliding Speeds by Switching the Doping States of a Conducting Polymer Support
,”
Nanotechnology
0957-4484,
18
(
5
), p.
055103
.
129.
Wu
,
D.
,
Tucker
,
R.
, and
Hess
,
H.
, 2005, “
Caged ATP: Fuel for Bionanodevices
,”
IEEE Trans. Adv. Packag.
1521-3323,
28
(
4
), pp.
594
599
.
130.
Tucker
,
R.
,
Katira
,
P.
, and
Hess
,
H.
, 2008, “
Herding Nanotransporters: Localized Activation via Release and Sequestration of Control Molecules
,”
Nano Lett.
1530-6984,
8
(
1
), pp.
221
226
.
131.
Du
,
Y. Z.
,
Hiratsuka
,
Y.
,
Taira
,
S.
,
Eguchi
,
M.
,
Uyeda
,
T. Q. P.
,
Yumoto
,
N.
, and
Kodaka
,
M.
, 2005, “
Motor Protein Nano-Biomachine Powered by Self-Supplying ATP
,”
Chem. Commun. (Cambridge)
1359-7345,
40
(
16
), pp.
2080
2082
.
132.
Nomura
,
A.
,
Uyeda
,
T. Q. P.
,
Yumoto
,
N.
, and
Tatsu
,
Y.
, 2006, “
Photo-Control of Kinesin-Microtubule Motility Using Caged Peptides Derived From the Kinesin C-Terminus Domain
,”
Chem. Commun. (Cambridge)
1359-7345,
34
, pp.
3588
3590
.
133.
Bull
,
J. L.
,
Hunt
,
A. J.
, and
Meyhofer
,
E.
, 2005, “
A Theoretical Model of a Molecular-Motor-Powered Pump
,”
Biomed. Microdevices
1387-2176,
7
(
1
), pp.
21
33
.
134.
Hess
,
H.
,
Clemmens
,
J.
,
Howard
,
J.
, and
Vogel
,
V.
, 2002, “
Surface Imaging by Self-Propelled Nanoscale Probes
,”
Nano Lett.
1530-6984,
2
(
2
), pp.
113
116
.
135.
Katira
,
P.
,
Agarwal
,
A.
,
Fischer
,
T.
,
Chen
,
H. -Y.
,
Jiang
,
X.
,
Lahann
,
J.
, and
Hess
,
H.
, 2007, “
Quantifying the Performance of Protein-Resisting Surfaces at Ultra-Low Protein Coverages Using Kinesin Motor Proteins as Probes
,”
Adv. Mater.
0935-9648,
19
, pp.
3171
3176
.
136.
Nicolau
,
D. V.
,
Nicolau
,
D. V.
,
Solana
,
G.
,
Hanson
,
K. L.
,
Filipponi
,
L.
,
Wang
,
L. S.
, and
Lee
,
A. P.
, 2006, “
Molecular Motors-Based Micro- and Nano-Biocomputation Devices
,”
Microelectron. Eng.
0167-9317,
83
(
4–9
), pp.
1582
1588
.
137.
Brunner
,
C.
,
Hess
,
H.
,
Ernst
,
K. -H.
, and
Vogel
,
V.
, 2004, “
Lifetime of Biomolecules in Hybrid Nanodevices
,”
Nanotechnology
0957-4484,
15
(
10
), pp.
S540
S548
.
138.
Boal
,
A. K.
,
Tellez
,
H.
,
Rivera
,
S. B.
,
Miller
,
N. E.
,
Bachand
,
G. D.
, and
Bunker
,
B. C.
, 2006, “
The Stability and Functionality of Chemically Crosslinked Microtubules
,”
Small
1613-6810,
2
(
6
), pp.
793
803
.
139.
Yokokawa
,
R.
,
Yoshida
,
Y.
,
Takeuchi
,
S.
,
Kon
,
T.
,
Sutoh
,
K.
, and
Fujita
,
H.
, 2005, “
Evaluation of Cryopreserved Microtubules Immobilized in Microfluidic Channels for a Bead-Assay-Based Transportation System
,”
IEEE Trans. Adv. Packag.
1521-3323,
28
(
4
), pp.
577
583
.
140.
Seetharam
,
R.
,
Wada
,
Y.
,
Ramachandran
,
S.
,
Hess
,
H.
, and
Satir
,
P.
, 2006, “
Long-Term Storage of Bionanodevices by Freezing and Lyophilization
,”
Lab Chip
1473-0197,
6
(
9
), pp.
1239
1242
.
141.
Uppalapati
,
M.
,
Huang
,
Y. -M.
,
Jackson
,
T. N.
, and
Hancock
,
W. O.
, 2008, “
Enhancing the Stability of Kinesin Motors for Microscale Transport Applications
,”
Lab Chip
1473-0197,
8
(
2
), pp.
358
361
.
142.
Grove
,
T. J.
,
Puckett
,
K. A.
,
Brunet
,
N. M.
,
Mihajlovic
,
G.
,
McFadden
,
L. A.
,
Xiong
,
P.
,
von Molnar
,
S.
,
Moerland
,
T. S.
, and
Chase
,
P. B.
, 2005, “
Packaging Actomyosin-Based Biomolecular Motor-Driven Devices for Nanoactuator Applications
,”
IEEE Trans. Adv. Packag.
1521-3323,
28
(
4
), pp.
556
563
.
143.
Verma
,
V.
,
Hancock
,
W. O.
, and
Catchmark
,
M.
, 2005, “
Micro- and Nanofabrication Processes for Hybrid and Biological System Fabrication
,”
IEEE Trans. Adv. Packag.
1521-3323,
28
, pp.
584
593
.
You do not currently have access to this content.