A hybrid continuum mechanics and molecular mechanics model is developed in this paper to predict the critical strain, stress, and buckling load of the inelastic buckling of carbon nanotubes. With the proposed model, the beamlike and shell-like buckling behavior of carbon nanotubes can be analyzed in a unified approach. The buckling solutions from the hybrid model are verified from molecular dynamics simulations via the MATERIALS STUDIO software package and from available research findings. The existence of the optimum diameter, at which the buckling load reaches its maximum, and the correlation of the diameter with the length of carbon nanotubes, as predicted by Liew et al. (2004, “Nanomechanics of Single and Multiwalled Carbon Nanotubes,” Phys. Rev. B, 69(11), pp. 115429), are uncovered by the hybrid model. The simplicity and effectiveness of the proposed model are not only able to reveal the chiral and size-dependent buckling solutions for carbon nanotubes, but also enable a thorough understanding of the stability behavior of carbon nanotubes in potential applications.

1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
(
6348
), pp.
56
58
.
2.
Ball
,
P.
, 2001, “
Roll Up for the Revolution
,”
Nature (London)
0028-0836,
414
(
6860
), pp.
142
144
.
3.
Baughman
,
R. H.
,
Zakhidov
,
A. A.
, and
De Heer
,
W. A.
, 2002, “
Carbon Nanotubes—the Route Toward Applications
,”
Science
0036-8075,
297
(
5582
), pp.
787
792
.
4.
Harris
,
P. J. F.
, 1999,
Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century
,
Cambridge University Press
,
Cambridge, New York
.
5.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
, 1996, “
Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,”
Nature (London)
0028-0836,
381
(
6584
), pp.
678
680
.
6.
Arroyo
,
M.
, and
Belytschko
,
T.
, 2002, “
An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films
,”
J. Mech. Phys. Solids
0022-5096,
50
(
9
), pp.
1941
1977
.
7.
Ru
,
C. Q.
, 2001, “
Axially Compressed Buckling of a Doublewalled Carbon Nanotube Embedded in an Elastic Medium
,”
J. Mech. Phys. Solids
0022-5096,
49
(
6
), pp.
1265
1279
.
8.
Lau
,
K. T.
, 2003, “
Interfacial Bonding Characteristics of Nanotube/Polymer Composites
,”
Chem. Phys. Lett.
0009-2614,
370
(
3–4
), pp.
399
405
.
9.
Liu
,
B.
,
Jiang
,
H.
,
Johnson
,
H. T.
, and
Huang
,
Y.
, 2004, “
The Influence of Mechanical Deformation on the Electrical Properties of Single Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
(
1
), pp.
1
26
.
10.
Ke
,
C. H.
,
Pugno
,
N.
,
Peng
,
B.
, and
Espinosa
,
H. D.
, 2005, “
Experiments and Modeling of Carbon Nanotube-Based NEMS Devices
,”
J. Mech. Phys. Solids
0022-5096,
53
(
6
), pp.
1314
1333
.
11.
Heller
,
D. A.
,
Jeng
,
E. S.
,
Yeung
,
T. K.
,
Martinez
,
B. M.
,
Moll
,
A. E.
,
Gastala
,
J. B.
, and
Strano
,
M. S.
, 2006, “
Optical Detection of DNA Conformational Polymorphism on Single-Walled Carbon Nanotubes
,”
Science
0036-8075,
311
(
5760
), pp.
508
511
.
12.
Zanello
,
L. P.
,
Zhao
,
B.
,
Hu
,
H.
, and
Haddon
,
R. C.
, 2006, “
Bone Cell Proliferation on Carbon Nanotubes
,”
Nano Lett.
1530-6984,
6
(
3
), pp.
562
567
.
13.
Wong Shi Kam
,
N.
, and
Dai
,
H.
, 2006, “
Single Walled Carbon Nanotubes for Transport and Delivery of Biological Cargos
,”
Phys. Status Solidi B
0370-1972,
243
(
13
), pp.
3561
3566
.
14.
Donaldson
,
K.
,
Aitken
,
R.
,
Tran
,
L.
,
Stone
,
V.
,
Duffin
,
R.
,
Forrest
,
G.
, and
Alexander
,
A.
, 2006, “
Carbon Nanotubes: A Review of Their Properties in Relation to Pulmonary Toxicology and Workplace Safety
,”
Toxicol. Sci.
1096-6080,
92
(
1
), pp.
5
22
.
15.
Poma
,
A.
, and
Di Giorgio
,
M. L.
, 2008, “
Toxicogenomics to Improve Comprehension of the Mechanisms Underlying Responses of In Vitro and In Vivo Systems to Nanomaterials: A Review
,”
Current Genomics
,
9
(
8
), pp.
571
585
. 1389-2029
16.
Linkov
,
I.
,
Satterstrom
,
F. K.
, and
Corey
,
L. M.
, 2008, “
Nanotoxicology and Nanomedicine: Making Hard Decisions
,”
Nanomedicine
1743-5889,
4
(
2
), pp.
167
171
.
17.
Wang
,
Q.
, 2009, “
Atomic Transportation Via Carbon Nanotubes
,”
Nano Lett.
1530-6984,
9
(
1
), pp.
245
249
.
18.
Falvo
,
M. R.
,
Clary
,
G. J.
,
Taylor
,
R. M.
, II
,
Chi
,
V.
,
Brooks
,
F. P.
, Jr.
,
Washburn
,
S.
, and
Superfine
,
R.
, 1997, “
Bending and Buckling of Carbon Nanotubes Under Large Strain
,”
Nature (London)
0028-0836,
389
(
6651
), pp.
582
584
.
19.
Lourie
,
O.
,
Cox
,
D. M.
, and
Wagner
,
H. D.
, 1998, “
Buckling and Collapse of Embedded Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
81
(
8
), pp.
1638
1641
.
20.
Qi
,
H. J.
,
Teo
,
K. B. K.
,
Lau
,
K. K. S.
,
Boyce
,
M. C.
,
Milne
,
W. I.
,
Robertson
,
J.
, and
Gleason
,
K. K.
, 2003, “
Determination of Mechanical Properties of Carbon Nanotubes and Vertically Aligned Carbon Nanotube Forests Using Nanoindentation
,”
J. Mech. Phys. Solids
0022-5096,
51
(
11–12
), pp.
2213
2237
.
21.
Kang
,
I.
,
Schulz
,
M. J.
,
Kim
,
J. H.
,
Shanov
,
V.
, and
Shi
,
D.
, 2006, “
A Carbon Nanotube Strain Sensor for Structural Health Monitoring
,”
Smart Mater. Struct.
0964-1726,
15
(
3
), pp.
737
748
.
22.
Hernandez
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
, 1998, “
Elastic Properties of C and BxCyNz Composite Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
80
(
20
), pp.
4502
4505
.
23.
Iijima
,
S.
,
Brabec
,
C.
,
Maiti
,
A.
, and
Bernholc
,
J.
, 1996, “
Structural Flexibility of Carbon Nanotubes
,”
J. Chem. Phys.
0021-9606,
104
(
5
), pp.
2089
2092
.
24.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1997, “
High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
8
(
4
), pp.
341
348
.
25.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
(
14
), pp.
2511
2514
.
26.
Liew
,
K. M.
,
Wong
,
C. H.
,
He
,
X. Q.
,
Tan
,
M. J.
, and
Meguid
,
S. A.
, 2004, “
Nanomechanics of Single and Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
69
(
11
), p.
115429
.
27.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
, 2004, “
Mechanics of Deformation of Single- and Multi-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
(
4
), pp.
789
821
.
28.
He
,
X. Q.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 2005, “
Buckling Analysis of Multi-Walled Carbon Nanotubes: A Continuum Model Accounting for van der Waals Interaction
,”
J. Mech. Phys. Solids
0022-5096,
53
(
2
), pp.
303
326
.
29.
Hasegawa
,
M.
, and
Nishidate
,
K.
, 2006, “
Radial Deformation and Stability of Single-Wall Carbon Nanotubes Under Hydrostatic Pressure
,”
Phys. Rev. B
0163-1829,
74
(
11
), pp.
115401
.
30.
James
,
R. D.
, 2006, “
Objective Structures
,”
J. Mech. Phys. Solids
0022-5096,
54
(
11
), pp.
2354
2390
.
31.
Wang
,
Q.
,
Duan
,
W. H.
,
Liew
,
K. M.
, and
He
,
X. Q.
, 2007, “
Inelastic Buckling of Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
90
(
3
), pp.
033110
.
32.
Column Research Council (U.S.)
, and
Johnston
,
B. G.
, 1966,
Guide to Design Criteria for Metal Compression Members
,
Wiley
,
New York
.
33.
Timoshenko
,
S.
, 1961,
Theory of Elastic Stability, Engineering Societies Monographs
McGraw-Hill
,
New York
.
34.
Xiao
,
T.
,
Xu
,
X. J.
, and
Liao
,
K.
, 2004, “
Characterization of Nonlinear Elasticity and Elastic Instability in Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
95
(
12
), pp.
8145
8148
.
35.
Chang
,
T. C.
,
Guo
,
W. L.
, and
Guo
,
X. M.
, 2005, “
Buckling of Multiwalled Carbon Nanotubes Under Axial Compression and Bending Via a Molecular Mechanics Model
,”
Phys. Rev. B
0163-1829,
72
(
6
), pp.
064101
.
36.
Chang
,
T. C.
,
Li
,
G. Q.
, and
Guo
,
X. M.
, 2005, “
Elastic Axial Buckling of Carbon Nanotubes Via a Molecular Mechanics Model
,”
Carbon
0008-6223,
43
(
2
), pp.
287
294
.
37.
Wang
,
Q.
,
Liew
,
K. M.
, and
Duan
,
W. H.
, 2008, “
Modeling of the Mechanical Instability of Carbon Nanotubes
,”
Carbon
0008-6223,
46
(
2
), pp.
285
290
.
38.
Adams
,
G. B.
,
Sankey
,
O. F.
,
Page
,
J. B.
,
Okeeffe
,
M.
, and
Drabold
,
D. A.
, 1992, “
Energetics of Large Fullerenes—Balls, Tubes, and Capsules
,”
Science
0036-8075,
256
(
5065
), pp.
1792
1795
.
39.
Robertson
,
D. H.
,
Brenner
,
D. W.
, and
Mintmire
,
J. W.
, 1992, “
Energetics of Nanoscale Graphitic Tubules
,”
Phys. Rev. B
0163-1829,
45
(
21
), pp.
12592
12595
.
40.
Lucas
,
A. A.
,
Lambin
,
P. H.
, and
Smalley
,
R. E.
, 1993, “
On the Energetics of Tubular Fullerenes
,”
J. Phys. Chem. Solids
0022-3697,
54
(
5
), pp.
587
593
.
41.
Wang
,
Q.
, 2004, “
Effective in-Plane Stiffness and Bending Rigidity of Armchair and Zigzag Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
41
(
20
), pp.
5451
5461
.
42.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Nicholson
,
L. M.
, and
Wise
,
K. E.
, 2001, “
Equivalent-Continuum Modeling of Nano-Structured Materials
,”
NASA
Langley Research Center, Report No. NASA/TM-2001-210863.
43.
Wang
,
Q.
, and
Varadan
,
V. K.
, 2006, “
Wave Characteristics of Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
43
(
2
), pp.
254
265
.
44.
Kármán
,
T. V.
, and
Tsien
,
H. S.
, 1941, “
The Buckling of Thin Cylindrical Shells Under Axial Compression
,”
J. Aeronaut. Sci.
0095-9812,
8
, pp.
303
315
.
45.
Vinson
,
J. R.
, 1974,
Structural Mechanics: The Behavior of Plates and Shells
,
Wiley
,
New York
.
46.
Seide
,
P.
,
Weingarten
,
V. I.
, and
Morgan
,
E. J.
, 1960, “
The Development of Design Criteria for Elastic Stability of Thin Shell Structures
,” TRW Space Technology Labs Los Angeles, CA, Report No. TR-60-0000-19425 (AFBMD-TR-561-7).
47.
Sears
,
A.
, and
Batra
,
R. C.
, 2006, “
Buckling of Multiwalled Carbon Nanotubes Under Axial Compression
,”
Phys. Rev. B
0163-1829,
73
(
8
), p.
085410
.
48.
Lamarle
,
A. H. E.
, 1845, “
Mémoire Sur La Flexion Du Bois
,”
Annales des Travaux Publiques de Belgique
,
3
, pp.
1
64
.
49.
Engesser
,
F.
, 1889, “
Ueber Die Knickfestigkeit Gerader Stabe
,”
Zeitschrift für Architektur und Ingenieurwesen
,
35
(
4
), pp.
455
462
.
50.
Chang
,
T. C.
,
Geng
,
J. Y.
, and
Guo
,
X. M.
, 2005, “
Chirality- and Size-Dependent Elastic Properties of Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
87
(
25
), pp.
251929
.
51.
Belytschko
,
T.
,
Xiao
,
S. P.
,
Schatz
,
G. C.
, and
Ruoff
,
R. S.
, 2002, “
Atomistic Simulations of Nanotube Fracture
,”
Phys. Rev. B
0163-1829,
65
(
23
), pp.
235430
.
52.
Allinger
,
N. L.
, 1977, “
Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms
,”
J. Am. Chem. Soc.
0002-7863,
99
(
25
), pp.
8127
8134
.
53.
Rigby
,
D.
,
Sun
,
H.
, and
Eichinger
,
B. E.
, 1997, “
Computer Simulations of Poly(Ethylene Oxide): Force Field, PVT Diagram and Cyclization Behaviour
,”
Polym. Int.
0959-8103,
44
(
3
), pp.
311
330
.
54.
Zhang
,
Y. Y.
,
Tan
,
V. B. C.
, and
Wang
,
C. M.
, 2006, “
Effect of Chirality on Buckling Behavior of Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
100
(
7
), p.
074304
.
55.
Leung
,
A. Y. T.
,
Guo
,
X.
,
He
,
X. Q.
,
Jiang
,
H.
, and
Huang
,
Y.
, 2006, “
Postbuckling of Carbon Nanotubes by Atomic-Scale Finite Element
,”
J. Appl. Phys.
0021-8979,
99
(
12
), p.
124308
.
You do not currently have access to this content.