Abstract
Targeted therapeutic delivery employs various technologies to enable precise delivery of therapeutic agents (drugs or cells) to specific areas within the human body. Compared with traditional drug administration routes, targeted therapeutic delivery has higher efficacy and reduced medication dosage and side effects. Soft microscale robotics have demonstrated great potential to precisely deliver drugs to the targeted region for performing designated therapeutic tasks. Microrobots can be actuated by various stimuli, such as heat, light, chemicals, acoustic waves, electric fields, and magnetic fields. Magnetic manipulation is well-suited for biomedical applications, as magnetic fields can safely permeate through organisms in a wide range of frequencies and amplitudes. Therefore, magnetic actuation is one of the most investigated and promising approaches for driving microrobots for targeted therapeutic delivery applications. To realize safe and minimally invasive therapies, biocompatibility and biodegradability are essential for these microrobots, which eliminates any post-treatment endoscopic or surgical removals. In this review, recent research efforts in the area of biodegradable magnetic microrobots used for targeted therapeutic delivery are summarized in terms of their materials, structure designs, and fabrication methods. In the end, remaining challenges and future prospects are discussed.