Abstract

Vibration-assisted nano-impact machining by loose abrasives (VANILA) is a newly developed process based on the atomic force microscope (AFM) platform, where the nanoabrasive (diamond particles) slurry is injected between the workpiece and the vibrating AFM probe. This study aims to use the commercial finite element method (FEM) software package abaqus to simulate the phase transformation experienced by the silicon workpiece and to study the effects of VANILA process parameters, such as impact speed, impact angle, and coefficient of friction between the nanoabrasive and silicon workpiece, on the volume of phase transformation of silicon. Among these three parameters, impact speed is found to have the most dominating effect on the phase transformation process, followed by impact angle and friction coefficient. It is found that the volumes for Si-VII, Si-VIII, and Si-X phases increase with the increase of impact speed from 100 m/s to 200 m/s. The phase volumes of Si-VII and Si-VIII are found to decrease slightly with the increase of friction coefficient from 0.05 to 0.5. The phase volumes for Si-VII, Si-VIII, and Si-X are found to increase with the increase of impact angles from 20 deg to 90 deg. Finally, the multiple linear regression modeling using a design of experiments is carried out to study the relationship among the three parameters and the volume of different phases of silicon.

References

References
1.
Krotz
,
G.
,
Legner
,
W.
,
Wapner
,
C.
,
Moller
,
H.
,
Sonntag
,
H.
, and
Muller
,
G.
,
1995
, “
Silicon Carbide as a Mechanical Material
,”
Proceedings of the International Solid-State Sensors and Actuators Conference—TRANSDUCERS '95
, Stockholm, Sweden, June 25–29, pp.
420
454
.
2.
Mangolini
,
L.
,
2013
, “
Synthesis, Properties, and Applications of Silicon Nanocrystals
,”
J. Vac. Sci. Technol. B
, 31(2), p.
20801
.10.1116/1.4794789
3.
Zheng
,
H.
, and
Liu
,
K.
,
2013
, “
Machinability of Engineering Materials
,”
Handbook of Manufacturing Engineering and Technology
,
A.
Nee
, ed.,
Springer
,
London
, pp.
1
34
.
4.
Malshe
,
A. P.
,
Rajurkar
,
K. P.
,
Virwani
,
K. R.
,
Taylor
,
C. R.
,
Bourell
,
D. L.
,
Levy
,
G.
,
Sundaram
,
M. M.
,
McGeough
,
J. A.
,
Kalyanasundaram
,
V.
, and
Samant
,
A. N.
,
2010
, “
Tip-Based Nanomanufacturing by Electrical, Chemical, Mechanical and Thermal Processes
,”
CIRP Ann.-Manuf. Technol.
,
59
(
2
), pp.
628
651
.10.1016/j.cirp.2010.05.006
5.
James
,
S.
, and
Sundaram
,
M. M.
,
2012
, “
A Feasibility Study of Vibration-Assisted Nano-Impact Machining by Loose Abrasives Using Atomic Force Microscope
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061014
.10.1115/1.4007714
6.
James
,
S.
, and
Sundaram
,
M. M.
,
2011
, “
Vibration Assisted Nano Abrasive Machining
,”
Proceedings of the International Conference on Precision, Meso, Micro, and Nano Engineering
, College of Engineering, Pune, India, Dec. 10–11, pp.
10
11
.
7.
James
,
S.
, and
Sundaram
,
M. M.
,
2013
, “
A Molecular Dynamics Study of the Effect of Impact Velocity, Particle Size and Angle of Impact of Abrasive Grain in the Vibration Assisted Nano Impact-Machining by Loose Abrasives
,”
Wear
,
303
(
1–2
), pp.
510
518
.10.1016/j.wear.2013.03.039
8.
James
,
S.
, and
Sundaram
,
M. M.
,
2014
, “
A Study on the Vibration Induced Transport of Nanoabrasives in Liquid Medium
,”
Powder Technol.
,
268
, pp.
150
157
.10.1016/j.powtec.2014.08.032
9.
James
,
S.
, and
Sundaram
,
M. M.
,
2014
, “
Modeling of Tool Wear in Vibration Assisted Nano Impact-Machining by Loose Abrasives
,”
Int. J. Manuf. Eng.
,
2014
, pp.
1
8
.10.1155/2014/291564
10.
James
,
S.
, and
Sundaram
,
M. M.
,
2015
, “
Modeling of Material Removal Rate in Vibration Assisted Nano Impact-Machining by Loose Abrasives
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021008
.10.1115/1.4028199
11.
Gerk
,
A.
, and
Tabor
,
D.
,
1978
, “
Indentation Hardness and Semiconductor–Metal Transition of Germanium and Silicon
,”
Nature
,
271
(
5647
), pp.
732
733
.10.1038/271732a0
12.
Budnitzki
,
M.
, and
Kuna
,
M.
,
2016
, “
Stress Induced Phase Transitions in Silicon
,”
J. Mech. Phys. Solids
,
95
, pp.
64
91
.10.1016/j.jmps.2016.03.017
13.
Minomura
,
S.
, and
Drickamer
,
H.
,
1962
, “
Pressure Induced Phase Transitions in Silicon, Germanium and Some III–V Compounds
,”
J. Phys. Chem. Solids
,
23
(
5
), pp.
451
456
.10.1016/0022-3697(62)90085-9
14.
Kiran
,
M. S. R. N.
,
Tran
,
T. T.
,
Smillie
,
L. A.
,
Haberl
,
B.
,
Subianto
,
D.
,
Williams
,
J. S.
, and
Bradby
,
J. E.
,
2015
, “
Temperature-Dependent Mechanical Deformation of Silicon at the Nanoscale: Phase Transformation Versus Defect Propagation
,”
J. Appl. Phys.
,
117
(
20
), p.
205901
.10.1063/1.4921534
15.
Fujisawa
,
N.
,
Williams
,
J.
, and
Swain
,
M.
,
2007
, “
On the Cyclic Indentation Behavior of Crystalline Silicon With a Sharp Tip
,”
J. Mater. Res.
,
22
(
11
), pp.
2992
2997
.10.1557/JMR.2007.0406
16.
Pfrommer
,
B. G.
,
Côté
,
M.
,
Louie
,
S. G.
, and
Cohen
,
M. L.
,
1997
, “
Ab Initio Study of Silicon in the R8 Phase
,”
Phys. Rev. B
,
56
(
11
), pp.
6662
6668
.10.1103/PhysRevB.56.6662
17.
ABAQUS
,
2010
, “
ABAQUS User's Manual
,” ABAQUS.
18.
Helwany
,
S.
,
2007
,
Applied Soil Mechanics With ABAQUS Applications
,
Wiley
, Hoboken, NJ.
19.
de Souza Neto
,
E. A.
,
Peric
,
D.
, and
Owen
,
D. R. J.
,
2008
,
Computational Methods for Plasticity: Theory and Applications
,
Wiley
, Chichester, UK.
20.
Ajjarapu
,
S. K.
,
Patten
,
J. A.
,
Cherukuri
,
H.
, and
Brand
,
C.
,
2004
, “
Numerical Simulations of Ductile Regime Machining of Silicon Nitride Using the Drucker-Prager Material Model
,”
Proc. Inst. Mech. Eng., Part C
,
218
(
6
), pp.
577
582
.10.1243/095440604774202204
21.
Ma
,
J.
,
Pelate
,
N.
, and
Lei
,
S.
,
2013
, “
3D Numerical Investigation of Thermally Assisted High Efficiency Ductile Machining of Nanocrystalline Hydroxyapatite
,”
J. Manuf. Processes
,
15
(
4
), pp.
586
592
.10.1016/j.jmapro.2013.06.007
22.
Ma
,
J.
,
Pelate
,
N.
, and
Lei
,
S.
,
2013
, “
Numerical Investigation of Thermally Assisted High Efficiency Ductile Machining of Brittle Materials
,”
Ceram. Int.
,
39
(
8
), pp.
9377
9384
.10.1016/j.ceramint.2013.05.054
23.
Ma
,
J.
,
Ge
,
X.
,
Pelate
,
N.
, and
Lei
,
S.
,
2015
, “
Numerical Investigation of Two-Dimensional Thermally Assisted Ductile Regime Milling of Nanocrystalline Hydroxyapatite
,”
Ceram. Int.
,
41
(
3
), pp.
3409
3419
.10.1016/j.ceramint.2014.10.131
24.
Wong
,
S.
,
Haberl
,
B.
,
Williams
,
J. S.
, and
Bradby
,
J. E.
,
2017
, “
Phase Transformation Dependence on Initial Plastic Deformation Mode in Si Via Nanoindentation
,”
Exp. Mech.
,
57
(
7
), pp.
1037
1043
.10.1007/s11340-016-0213-7
25.
Sik
,
J.
,
Lenhard
,
R.
, and
Hudec
,
R.
, "Silicon Wafer Shaping: Plastic vs. Elastic Deformation," accessed Dec. 30, 2019, http://eos.asu.cas.cz/ibws10/media//uploads/Sik_IBWS10.pdf
26.
Masolin
,
A.
,
Bouchard
,
P. O.
,
Martini
,
R.
, and
Bernacki
,
M.
,
2013
, “
Thermo-Mechanical and Fracture Properties in Single-Crystal Silicon
,”
J. Mater. Sci.
,
48
(
3
), pp.
979
988
.10.1007/s10853-012-6713-7
27.
Hall
,
J.
,
1967
, “
Electronic Effects in the Elastic Constants of n-Type Silicon
,”
Phys. Rev.
,
161
(
3
), pp.
756
761
.10.1103/PhysRev.161.756
28.
Domnich
,
V.
,
Gogotsi
,
Y.
, and
Dub
,
S.
,
2000
, “
Effect of Phase Transformations on the Shape of the Unloading Curve in the Nanoindentation of Silicon
,”
Appl. Phys. Lett.
,
76
(
16
), pp.
2214
2216
.10.1063/1.126300
29.
Cook
,
R.
,
2006
, “
Strength and Sharp Contact Fracture of Silicon
,”
J. Mater. Sci.
,
41
(
3
), pp.
841
872
.10.1007/s10853-006-6567-y
30.
CES EDUPACK
,
2016
, Version 7.0, CES EDUPACK, Granta Design Ltd.
31.
Youn
,
S. W.
, and
Kang
,
C. G.
,
2004
, “
A Study of Nanoscratch Experiments of the Silicon and Borosilicate in Air
,”
Mater. Sci. Eng. A
,
384
(
1–2
), pp.
275
283
.10.1016/S0921-5093(04)00829-9
32.
Hauch
,
J. A.
,
Holland
,
D.
,
Marder
,
M. P.
, and
Swinney
,
H. L.
,
1999
, “
Dynamic Fracture in Single Crystal Silicon
,”
Phys. Rev. Lett.
,
82
(
19
), pp.
3823
3826
.10.1103/PhysRevLett.82.3823
33.
Mir
,
A.
,
Luo
,
X.
, and
Sun
,
J.
,
2016
, “
The Investigation of Influence of Tool Wear on Ductile to Brittle Transition in Single Point Diamond Turning of Silicon
,”
Wear
,
364–365
, pp.
233
243
.10.1016/j.wear.2016.08.003
34.
Zukas
,
J. A.
,
Nicholas
,
T.
,
Swift
,
H.
,
Greszczuk
,
L. B.
, and
Curran
,
D. R.
,
1981
,
Impact Dynamics
,
Wiley
, New York.
You do not currently have access to this content.