Abstract

Wire electrochemical machining (WECM) has the capability to produce metal microcomponents with high aspect ratios. However, because interelectrode gap mass transportation of electrolyte is not homogeneous due to inappropriate and insufficient flushing, novel vibration-assisted axial nozzle jet flow WECM is introduced, and a unique experimental setup and tool are created. A comparison of the axial flow system, axial flow with PZT vibration with this newly developed flushing strategy was made. The effect of the most influencing parameters, i.e., pulse voltage, wire feed rate, and duty ratio, on the machining results of each flushing strategy being analyzed. The improvement of 36% slit width reduction and 75% increase in machining accuracy compared to axial flow WECM and 23% slit width reduction and 40% increase in machining accuracy compared to axial flow with PZT vibration WECM was observed using this novel technique with microslits machined on 100 μm thick stainless steel SS304. The effect of nozzle diameter and workpiece nozzle stand-off distances on slit width machining results has been investigated. The average slit width is 115 μm at 0.4 mm nozzle diameter, and it rises to 143 μm at 1 mm nozzle diameter. The average slit width is 110 μm at a 5 mm workpiece nozzle stand-off distance, and it rises to 145 μm at a 20 mm workpiece nozzle stand-off distance. This research report also discusses microslit machining of NiTinol shape memory alloy for improving WECM performance.

References

1.
Bhattacharyya
,
B.
,
2015
,
Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology
,
William Andrew Applied Science Publishers, Imprint of Elsevier
, Waltham,
MA
, p.
220
.
2.
Qu
,
N.
, and
Gao
,
C.
,
2021
, “
Improving Surface Processing Quality in Wire Electrochemical Micromachining by Gas Bubble Chain
,”
J. Mater. Process. Tech
,
294
, p.
117136
.10.1016/j.jmatprotec.2021.117136
3.
Jing
,
Q.
,
Li
,
P.
,
Zhang
,
Y.
,
Li
,
J.
, and
Ji
,
F.
,
2020
, “
Micro Machining by Wire-Preposed Jet Electrochemical Machining
,”
Procedia CIRP
,
95
), pp.
809
814
.10.1016/j.procir.2020.02.274
4.
Debnath
,
S.
,
Doloi
,
B.
, and
Bhattacharyya
,
B.
,
2019
, “
Review-Wire Electrochemical Machining Process: Overview and Recent Advances
,”
J. Electrochem. Soc.
,
166
(
10
), pp.
E293
E309
.10.1149/2.0391910jes
5.
Sharma
,
V.
,
Patel
,
D. S.
,
Jain
,
V. K.
, and
Ramkumar
,
J.
,
2020
, “
Wire Electrochemical Micromachining: An Overview
,”
Int. J. Mach. Tools Manuf.
,
155
), p.
103579
.10.1016/j.ijmachtools.2020.103579
6.
Ghoshal
,
B.
, and
Bhattacharyya
,
B.
,
2015
, “
Vibration Assisted Electrochemical Micromachining of High Aspect Ratio Micro Features
,”
Precis. Eng.
,
42
, pp.
231
241
.10.1016/j.precisioneng.2015.05.005
7.
He
,
H.
,
Qu
,
N.
,
Zeng
,
Y.
,
Fang
,
X.
, and
Yao
,
Y.
,
2016
, “
Machining Accuracy in Pulsed Wire Electrochemical Machining of γ-TiAl Alloy
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
2353
2359
.10.1007/s00170-016-8402-1
8.
He
,
H.
,
Zhang
,
X.
,
Qu
,
N.
,
Zeng
,
Y.
, and
Zhong
,
B.
,
2019
, “
Wire Electrochemical Micro Machining Assisted With Coupling Axial and Intermittent Feed-Direction Vibrations
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
E165
E180
.10.1149/2.1001906jes
9.
Debnath
,
S.
,
Kundu
,
J.
, and
Bhattacharyya
,
B.
,
2017
, “
Influence of Wire Electrochemical Machining Parameters During Fabrication of Micro Features
,”
Int. J. Precis. Technol.
,
7
(
2/3/4
), pp.
103
118
.10.1504/IJPTECH.2017.090765
10.
Bin Zeng
,
Y.
,
Yu
,
Q.
,
Wang
,
S. H.
, and
Zhu
,
D.
,
2012
, “
Enhancement of Mass Transport in Microwire Electrochemical Machining
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
195
198
.10.1016/j.cirp.2012.03.082
11.
Qu
,
N.
,
Fang
,
X.
,
Li
,
W.
,
Zeng
,
Y.
, and
Zhu
,
D.
,
2013
, “
Wire Electrochemical Machining With Axial Electrolyte Flushing for Titanium Alloy
,”
Chin. J. Aeronaut.
,
26
(
1
), pp.
224
229
.10.1016/j.cja.2012.12.026
12.
Xu
,
K.
,
Zeng
,
Y.
,
Li
,
P.
, and
Zhu
,
D.
,
2015
, “
Study of Surface Roughness in Wire Electrochemical Micromachining
,”
J. Mater. Process. Technol.
,
222
, pp.
103
109
.10.1016/j.jmatprotec.2015.03.007
13.
Wang
,
S.
,
Zhu
,
D.
,
Zeng
,
Y.
, and
Liu
,
Y.
,
2011
, “
Microwire Electrode Electrochemical Cutting With Low Frequency and Small Amplitude Tool Vibration
,”
Int. J. Adv. Manuf. Technol.
,
53
(
5–8
), pp.
535
544
.10.1007/s00170-010-2835-8
14.
Debnath
,
S.
,
Kundu
,
J.
, and
Bhattacharyya
,
B.
,
2018
, “
Modeling and Influence of Voltage and Duty Ratio on Wire Feed in WECM: Possible Alternative of WEDM
,”
J. Electrochem. Soc.
,
165
(
2
), pp.
E35
E44
.10.1149/2.0601802jes
You do not currently have access to this content.