Abstract

Nature provides us with a large number of functional material systems consisting of hierarchical structures, where significant variations in dimensions are present. Such hierarchical structures are difficult to build by traditional manufacturing processes due to manufacturing limitations. Nowadays, three-dimensional (3D) objects with complex structures can be built by gradually accumulating in a layer-based additive manufacturing (AM); however, the hierarchical structure measured from macroscale to nanoscale sizes still raises significant challenges to the AM processes, whose manufacturing capability is intrinsically specified within a certain scope. It is desired to develop a multiscale AM process to narrow this gap between scales of feature in hierarchical structures. This research aims to investigate an integration approach to fabricating hierarchical objects that have macro-, micro-, and nano-scales features in an object. Firstly, the process setup and the integrated process of two-photon polymerization (TPP), immersed surface accumulation (ISA), and mask image projection-based stereolithography (MIP-SL) were introduced to address the multiscale fabrication challenge. Then, special hierarchical design and process planning toward integrating multiple printing processes are demonstrated. Lastly, we present two test cases built by our hierarchical printing method to validate the feasibility and efficiency of the proposed multiscale hierarchical printing approach. The results demonstrated the capability of the developed multiscale 3D printing process and showed its future potential in various novel applications, such as optics, microfluidics, cell culture, as well as interface technology.

References

1.
Wegst
,
U. G.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.10.1038/nmat4089
2.
Yang
,
Y.
,
Song
,
X.
,
Li
,
X.
,
Chen
,
Z.
,
Zhou
,
C.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2018
, “
Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures
,”
Adv. Mater.
,
30
(
36
), p.
e1706539
.10.1002/adma.201706539
3.
Liu
,
K.
, and
Jiang
,
L.
,
2011
, “
Bio-Inspired Design of Multiscale Structures for Function Integration
,”
Nano Today
,
6
(
2
), pp.
155
175
.10.1016/j.nantod.2011.02.002
4.
Bhushan
,
B.
,
2009
, “
Biomimetics: Lessons From Nature–an Overview
,”
Philos. Trans. R. Soc. A: Math., Phy. Eng. Sci.
,
367
(
1893
), pp.
1445
1486
.10.1098/rsta.2009.0011
5.
Gu
,
G. X.
,
Su
,
I.
,
Sharma
,
S.
,
Voros
,
J. L.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2016
, “
Three-Dimensional-Printing of Bio-Inspired Composites
,”
ASME J. Biomech. Eng
,
138
(
2
), p.
21006
.10.1115/1.4032423
6.
Kong
,
Y. L.
,
Gupta
,
M. K.
,
Johnson
,
B. N.
, and
McAlpine
,
M. C.
,
2016
, “
3D Printed Bionic Nanodevices
,”
Nano Today
,
11
(
3
), pp.
330
350
.10.1016/j.nantod.2016.04.007
7.
Ke
,
P.
,
Jiao
,
X. N.
,
Ge
,
X. H.
,
Xiao
,
W. M.
, and
Yu
,
B.
,
2014
, “
From Macro to Micro: Structural Biomimetic Materials by Electrospinning
,”
RSC Adv.
,
4
(
75
), pp.
39704
39724
.10.1039/C4RA05098C
8.
Jonušauskas
,
L.
,
Juodkazis
,
S.
, and
Malinauskas
,
M.
,
2018
, “
Optical 3D Printing: Bridging the Gaps in the Mesoscale
,”
J. Opt.
,
20
(
5
), p.
053001
.10.1088/2040-8986/aab3fe
9.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.10.1007/s11665-014-0958-z
10.
Leung
,
Y. S.
,
Kwok
,
T. H.
,
Li
,
X.
,
Yang
,
Y.
,
Wang
,
C. C.
, and
Chen
,
Y.
,
2019
, “
Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021013
.10.1115/1.4041913
11.
Kolesky
,
D. B.
,
Truby
,
R. L.
,
Gladman
,
A. S.
,
Busbee
,
T. A.
,
Homan
,
K. A.
, and
Lewis
,
J. A.
,
2014
, “
3D Bioprinting of Vascularized, Heterogeneous Cell‐Laden Tissue Constructs
,”
Adv. Mater.
,
26
(
19
), pp.
3124
3130
.10.1002/adma.201305506
12.
Au
,
A. K.
,
Huynh
,
W.
,
Horowitz
,
L. F.
, and
Folch
,
A.
,
2016
, “
3D‐Printed Microfluidics
,”
Angew. Chem. Int. Ed.
,
55
(
12
), pp.
3862
3881
.10.1002/anie.201504382
13.
Wu
,
W.
,
DeConinck
,
A.
, and
Lewis
,
J. A.
,
2011
, “
Omnidirectional Printing of 3D Microvascular Networks
,”
Adv. Mater.
,
23
(
24
), pp.
H178
H183
.10.1002/adma.201004625
14.
Li
,
Y.
,
Mao
,
H.
,
Hu
,
P.
,
Hermes
,
M.
,
Lim
,
H.
,
Yoon
,
J.
,
Luhar
,
M.
,
Chen
,
Y.
, and
Wu
,
W.
,
2019
, “
Bioinspired Functional Surfaces Enabled by Multiscale Stereolithography
,”
Adv. Mater. Tech.
,
4
(
5
), p.
1800638
.10.1002/admt.201800638
15.
Mao
,
H.
,
Leung
,
Y. S.
,
Li
,
Y.
,
Hu
,
P.
,
Wu
,
W.
, and
Chen
,
Y.
,
2017
, “
Multiscale Stereolithography Using Shaped Beams
,”
ASME J. Micro Nano-Manuf.
,
5
(
4
), p.
40905
.10.1115/1.4037832
16.
Zhou
,
C.
,
Ye
,
H.
, and
Zhang
,
F.
,
2015
, “
A Novel Low-Cost Stereolithography Process Based on Vector Scanning and Mask Projection for High-Accuracy, High-Speed, High-Throughput, and Large-Area Fabrication
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
1
), p.
011003
.10.1115/1.4028848
17.
Jia
,
W.
,
Leung
,
Y. S.
,
Mao
,
H.
,
Xu
,
H.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2022
, “
Hybrid-Light-Source Stereolithography for Fabricating Macro-Objects With Micro-Textures
,”
ASME J. Manuf. Sci. Eng.
,
144
(
3
), p.
031003
.10.1115/1.4051831
18.
Porter
,
B. F.
,
Mkhize
,
N.
, and
Bhaskaran
,
H.
,
2017
, “
Nanoparticle Assembly Enabled by EHD-Printed Monolayers
,”
Microsyst. Nanoeng.
,
3
(
1
), pp.
1
9
.10.1038/micronano.2017.54
19.
Choi
,
J. W.
,
Yamashita
,
M.
,
Sakakibara
,
J.
,
Kaji
,
Y.
,
Oshika
,
T.
, and
Wicker
,
R. B.
,
2010
, “
Combined Micro and Macro Additive Manufacturing of a Swirling Flow Coaxial Phacoemulsifier Sleeve With Internal Micro-Vanes
,”
Biomed. Microdev.
,
12
(
5
), pp.
875
886
.10.1007/s10544-010-9442-1
20.
Hengsbach
,
S.
, and
Lantada
,
A. D.
,
2014
, “
Rapid Prototyping of Multi-Scale Biomedical Microdevices by Combining Additive Manufacturing Technologies
,”
Biomed. Microdev.
,
16
(
4
), pp.
617
627
.10.1007/s10544-014-9864-2
21.
Malinauskas
,
M.
,
Rekštytė
,
S.
,
Lukoševičius
,
L.
,
Butkus
,
S.
,
Balčiūnas
,
E.
,
Pečiukaitytė
,
M.
,
Baltriukienė
,
D.
,
Bukelskienė
,
V.
,
Butkevičius
,
A.
,
Kucevičius
,
P.
,
Rutkūnas
,
V.
, and
Juodkazis
,
S.
,
2014
, “
3D Microporous Scaffolds Manufactured Via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation
,”
Micromachines
,
5
(
4
), pp.
839
858
.10.3390/mi5040839
22.
Autumn
,
K.
, and
Gravish
,
N.
,
2008
, “
Gecko Adhesion: Evolutionary Nanotechnology
,”
Philos. Trans. R. Soc. London, Ser A: Math., Phy. Eng. Sci.
,
366
(
1870
), pp.
1575
1590
.10.1098/rsta.2007.2173
23.
Zhou
,
C.
,
Chen
,
Y.
, and
Waltz
,
R. A.
,
2009
, “
Optimized Mask Image Projection for Solid Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
61004
.10.1115/1.4000416
24.
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Additive Manufacturing Based on Optimized Mask Video Projection for Improved Accuracy and Resolution
,”
J. Manuf. Processes
,
14
(
2
), pp.
107
118
.10.1016/j.jmapro.2011.10.002
25.
Li
,
X.
,
Mao
,
H.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2019
, “
Mask Video Projection-Based Stereolithography With Continuous Resin Flow
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
81007
.10.1115/1.4043765
26.
Pan
,
Y.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
51011
.10.1115/1.4007465
27.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2013
, “
Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography
,”
Rapid Prototyping J.
,
19
(
3
), pp.
153
165
.10.1108/13552541311312148
28.
Pan
,
Y.
,
Chen
,
Y.
, and
Yu
,
Z.
,
2017
, “
Fast Mask Image Projection-Based Micro-Stereolithography Process for Complex Geometry
,”
ASME J. Micro/Nano-Manuf.
,
5
(
1
), p.
014501
.10.1115/1.4035388
29.
Li
,
X.
,
Yang
,
Y.
,
Xie
,
B.
,
Chu
,
M.
,
Sun
,
H.
,
Hao
,
S.
,
Chen
,
Y.
, and
Chen
,
Y.
,
2019
, “
3D Printing of Flexible Liquid Sensor Based on Swelling Behavior of Hydrogel With Carbon Nanotubes
,”
Adv. Mater. Tech.
,
4
(
2
), p.
1800476
.10.1002/admt.201800476
30.
Li
,
X.
,
Xie
,
B.
,
Jin
,
J.
,
Chai
,
Y.
, and
Chen
,
Y.
,
2018
, “
3D Printing Temporary Crown and Bridge by Temperature Controlled Mask Image Projection Stereolithography
,”
Procedia Manuf.
,
26
, pp.
1023
1033
.10.1016/j.promfg.2018.07.134
31.
Yang
,
Y.
,
Li
,
X.
,
Chu
,
M.
,
Sun
,
H.
,
Jin
,
J.
,
Yu
,
K.
,
Wang
,
Q.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2019
, “
Electrically Assisted 3D Printing of Nacre-Inspired Structures With Self-Sensing Capability
,”
Sci. Adv.
,
5
(
4
), p.
eaau9490
.10.1126/sciadv.aau9490
32.
Wu
,
E. S.
,
Strickler
,
J. H.
,
Harrell
,
W. R.
, and
Webb
,
W. W.
,
1992
, “
Two-Photon Lithography for Microelectronic Application
,”
Proc. Opt./Laser Microlith. V
,
1674
, pp.
776
782
.10.1117/12.130367
33.
Maruo
,
S.
,
Nakamura
,
O.
, and
Kawata
,
S.
,
1997
, “
Three-Dimensional Microfabrication With Two-Photon-Absorbed Photopolymerization
,”
Opt. Lett.
,
22
(
2
), pp.
132
134
.10.1364/OL.22.000132
34.
Cheng
,
J.
,
Gu
,
C.
,
Zhang
,
D.
,
Wang
,
D.
, and
Chen
,
S. C.
,
2016
, “
Ultrafast Axial Scanning for Two-Photon Microscopy Via a Digital Micromirror Device and Binary Holography
,”
Opt. Lett.
,
41
(
7
), pp.
1451
1454
.10.1364/OL.41.001451
35.
Jiang
,
L.
,
Xiong
,
W.
,
Zhou
,
Y.
,
Liu
,
Y.
,
Huang
,
X.
,
Li
,
D.
,
Baldacchini
,
T.
,
Jiang
,
L.
, and
Lu
,
Y.
,
2016
, “
Performance Comparison of Acrylic and Thiol-Acrylic Resins in Two-Photon Polymerization
,”
Opt. Express
,
24
(
12
), pp.
13687
13701
.10.1364/OE.24.013687
36.
Baldacchini
,
T.
(Ed.).,
2015
,
Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications
,
Chapter 1–3, William Andrew, New York.
37.
Li
,
X.
, and
Chen
,
Y.
,
2017
, “
Micro-Scale Feature Fabrication Using Immersed Surface Accumulation
,”
J. Manuf. Processes
,
28
(
3
), pp.
531
540
.10.1016/j.jmapro.2017.04.022
38.
Yang
,
Y.
,
Li
,
X.
,
Zheng
,
X.
,
Chen
,
Z.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2018
, “
3D‐Printed Biomimetic Super‐Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation
,”
Adv. Mater.
,
30
(
9
), p.
1704912
.10.1002/adma.201704912
39.
Li
,
X.
,
Yang
,
Y.
,
Liu
,
L.
,
Chen
,
Y.
,
Chu
,
M.
,
Sun
,
H.
,
Shan
,
W.
, and
Chen
,
Y.
,
2020
, “
3D‐Printed Cactus‐Inspired Spine Structures for Highly Efficient Water Collection
,”
Adv. Mater. Interfaces
,
7
(
3
), p.
1901752
.10.1002/admi.201901752
40.
Hribar
,
K. C.
,
Finlay
,
D.
,
Ma
,
X.
,
Qu
,
X.
,
Ondeck
,
M. G.
,
Chung
,
P. H.
,
Zanella
,
A.
,
Engler
,
A. J.
,
Sheikh
,
F.
,
Vuori
,
K.
, and
Chen
,
S. C.
,
2015
, “
Nonlinear 3D Projection Printing of Concave Hydrogel Microstructures for Long-Term Multicellular Spheroid and Embryoid Body Culture
,”
Lab a Chip
,
15
(
11
), pp.
2412
2418
.10.1039/C5LC00159E
41.
Jacobs
,
P. F.
,
1992
,
Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography
,
Society of Manufacturing Engineers
, Southfield, MI.
42.
Jacobs
,
P. F.
,
1995
,
Stereolithography and Other RP&M Technologies: From Rapid Prototyping to Rapid Tooling
,
Society of Manufacturing Engineers
, Southfield, MI.
43.
Lee
,
J. H.
,
Prud'Homme
,
R. K.
, and
Aksay
,
I. A.
,
2001
, “
Cure Depth in Photopolymerization: Experiments and Theory
,”
J. Mater. Res.
,
16
(
12
), pp.
3536
3544
.10.1557/JMR.2001.0485
44.
Gong
,
H.
,
Beauchamp
,
M.
,
Perry
,
S.
,
Woolley
,
A. T.
, and
Nordin
,
G. P.
,
2015
, “
Optical Approach to Resin Formulation for 3D Printed Microfluidics
,”
RSC Adv.
,
5
(
129
), pp.
106621
106632
.10.1039/C5RA23855B
45.
Zissi
,
S.
,
Bertsch
,
A.
,
Jézéquel
,
J. Y.
,
Corbel
,
S.
,
Lougnot
,
D. J.
, and
Andre
,
J. C.
,
1996
, “
Stereolithography and Microtechniques
,”
Microsyst. Technol.
,
2
(
2
), pp.
97
102
.10.1007/BF02447758
46.
Zhu
,
Y.
,
Joralmon
,
D.
,
Shan
,
W.
,
Chen
,
Y.
,
Rong
,
J.
,
Zhao
,
H.
,
Xiao
,
S.
, and
Li
,
X.
,
2021
, “
3D Printing Biomimetic Materials and Structures for Biomedical Applications
,”
Bio-Des. Manuf.
,
4
(
2
), pp.
405
28
.10.1007/s42242-020-00117-0
47.
Zhao
,
Y.
,
Xie
,
Z.
,
Gu
,
H.
,
Zhu
,
C.
, and
Gu
,
Z.
,
2012
, “
Bio-Inspired Variable Structural Color Materials
,”
Chem. Soc. Rev.
,
41
(
8
), pp.
3297
3317
.10.1039/c2cs15267c
48.
Kim
,
S.
,
Shin
,
J. H.
,
Kim
,
S.
,
Yoo
,
S. J.
,
Jun
,
B. O.
,
Moon
,
C.
, and
Jang
,
J. E.
,
2016
, “
Geometric Effects of Nano-Hole Arrays for Label Free Bio-Detection
,”
RSC Adv.
,
6
(
11
), pp.
8935
8940
.10.1039/C5RA25797B
49.
Zhang
,
W.
,
Zhang
,
D.
,
Fan
,
T.
,
Gu
,
J.
,
Ding
,
J.
,
Wang
,
H.
,
Guo
,
Q.
, and
Ogawa
,
H.
,
2009
, “
Novel Photoanode Structure Templated From Butterfly Wing Scales
,”
Chem. Mater.
,
21
(
1
), pp.
33
40
.10.1021/cm702458p
50.
Zhu
,
Y.
,
Tang
,
T.
,
Zhao
,
S.
,
Joralmon
,
D.
,
Poit
,
Z.
,
Ahire
,
B.
,
Keshav
,
S.
,
Raje
,
A. R.
,
Blair
,
J.
,
Zhang
,
Z.
, and
Li
,
X.
,
2022
, “
Recent Advancements and Applications in 3D Printing of Functional Optics
,”
Addit. Manuf.
,
52
, p.
102682
.10.1016/j.addma.2022.102682
You do not currently have access to this content.