Abstract

Titanium and its alloys are considered as difficult to cut material classes, and their processing through the traditional machining methods is a painful task. These materials have an outstanding combination of properties like high specific strength, excellent corrosive resistance, and exceptional biocompatibility; therefore, they have broad fields of application like aerospace, micro-electromechanical system, and biomedical. Electrochemical micromachining (ECMM) is a vital process for the production of microdomain features in difficult-to-machine materials. The machining issue with ECMM for titanium and their alloys is the passive layer formation, which hinders the dissolution and causes stray removal. To overcome these issues, a hybrid ECMM approach has been proposed by using a diamond abrasive tool combined with ECMM. This study focuses on the detailed characterization of the passive layer formed using the hybrid approach. Through the use of abrasive tool, the abrasive grits scoop the passive layer by the mechanical grinding action, formed in microdrilling on the Ti6Al4V alloy to expose a new surface for further dissolution. The microholes were produced incorporating the abrasive tool and then compared by the holes created using a cylindrical tool (tool without abrasive). The taper and the stray dissolution of the microholes were also compared, produced at different applied potentials. The minimum average entry overcut and exit overcut of the hole were obtained as 29 μm and 3 μm, respectively, also a microhole with the lowest taper of 2.7 deg, achieved by the use of the abrasive microtool.

References

1.
Dhobe
,
S. D.
,
Doloi
,
B.
, and
Bhattacharyya
,
B.
,
2011
, “
Surface Characteristics of ECMed Titanium Work Samples for Biomedical Applications
,”
Int. J. Adv. Manuf. Technol.
,
55
(
1–4
), pp.
177
188
.10.1007/s00170-010-3040-5
2.
Anasane
,
S. S.
, and
Bhattacharyya
,
B.
,
2016
, “
Experimental Investigation on Suitability of Electrolytes for Electrochemical Micromachining of Titanium
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
2147
2160
.10.1007/s00170-015-8309-2
3.
Nam
,
J.
, and
Lee
,
S. W.
,
2018
, “
Machinability of Titanium Alloy (Ti-6Al-4V) in Environmentally-Friendly Micro-Drilling Process With Nanofluid Minimum Quantity Lubrication Using Nanodiamond Particles
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
5
(
1
), pp.
29
35
.10.1007/s40684-018-0003-z
4.
Sjöström
,
T.
, and
Su
,
B.
,
2011
, “
Micropatterning of Titanium Surfaces Using Electrochemical Micromachining With an Ethylene Glycol Electrolyte
,”
Mater. Lett.
,
65
(
23–24
), pp.
3489
3492
.10.1016/j.matlet.2011.07.103
5.
Jain
,
V. K.
,
Kalia
,
S.
,
Sidpara
,
A.
, and
Kulkarni
,
V. N.
,
2012
, “
Fabrication of Micro-Features and Micro-Tools Using Electrochemical Micromachining
,”
Int. J. Adv. Manuf. Technol.
,
61
(
9–12
), pp.
1175
1183
.10.1007/s00170-012-4088-1
6.
Jiang
,
L. M.
,
Li
,
W.
,
Attia
,
A.
,
Cheng
,
Z. Y.
,
Tang
,
J.
,
Tian
,
Z. Q.
, and
Tian
,
Z. W.
,
2008
, “
A Potential Method for Electrochemical Micromachining of Titanium Alloy Ti6Al4V
,”
J. Appl. Electrochem.
,
38
(
6
), pp.
785
791
.10.1007/s10800-008-9513-7
7.
Thakur
,
A.
,
Tak
,
M.
, and
Mote
,
R. G.
,
2019
, “
Electrochemical Micromachining Behavior on 17-4 PH Stainless Steel Using Different Electrolytes
,”
Procedia Manuf.
,
34
, pp.
355
361
.10.1016/j.promfg.2019.06.177
8.
Tak
,
M.
,
Reddy
,
S. V.
,
Mishra
,
A.
, and
Mote
,
R. G.
,
2018
, “
Investigation of Pulsed Electrochemical Micro-Drilling on Titanium Alloy in the Presence of Complexing Agent in Electrolyte
,”
J. Micromanuf.
,
1
(
2
), pp.
1
12
.10.1177/2516598418784682
9.
Sandip
,
S. A.
, and
Bhattacharyya
,
B.
,
2016
, “
Experimental Investigation Into Fabrication of Microfeatures on Titanium by Electrochemical Micromachining
,”
Adv. Manuf.
,
4
(
2
), pp.
167
177
.10.1007/s40436-016-0145-6
10.
Rathod
,
V.
,
Doloi
,
B.
, and
Bhattacharyya
,
B.
,
2017
, “
Fabrication of Microgrooves With Varied Cross-Sections by Electrochemical Micromachining
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1–4
), pp.
505
518
.10.1007/s00170-017-0167-7
11.
Weinmann
,
M.
,
Stolpe
,
M.
,
Weber
,
O.
,
Busch
,
R.
, and
Natter
,
H.
,
2015
, “
Electrochemical Dissolution Behaviour of Ti90Al6V4 and Ti60Al40 Used for ECM Applications
,”
J. Solid State Electrochem.
,
19
(
2
), pp.
485
495
.10.1007/s10008-014-2621-x
12.
Chin
,
D. T.
, and
Mao
,
K. W.
,
1974
, “
Transpassive Dissolution of Mild Steel in NaNO3 Electrolytes
,”
J Appl. Electrochem.
,
4
(
2
), pp.
155
161
.10.1007/BF00609024
13.
Wang
,
Y.
, and
Qu
,
N.
,
2019
, “
Effect of Breakdown Behavior of Passive Films on the Electrochemical Jet Milling of Titanium Alloy TC4 in Sodium Nitrate Solution
,”
Int. J. Electrochem. Sci.
,
14
, pp.
1116
1131
.10.20964/2019.02.05
14.
Schultze
,
J. W.
, and
Lohrengel
,
M. M.
,
2000
, “
Stability, Reactivity and Breakdown of the Passive Films. Problems of Recent and Future Research
,”
Electrochim. Acta
,
45
(
15–16
), pp.
2499
2513
.10.1016/S0013-4686(00)00347-9
15.
Wang
,
D.
,
Zhu
,
Z.
,
He
,
B.
,
Ge
,
Y.
, and
Zhu
,
D.
,
2017
, “
Effect of the Breakdown Time of a Passive Film on the Electrochemical Machining of Rotating Cylindrical Electrode in NaNO3 Solution
,”
Int. J. Adv. Manuf. Technol.
,
239
, pp.
251
257
.10.1016/j.jmatprotec.2016.08.023
16.
Speidel
,
A.
,
Mitchell-Smith
,
J.
,
Walsh
,
D. A.
,
Hirsch
,
M.
, and
Clare
,
A.
,
2016
, “
Electrolyte Jet Machining of Titanium Alloys Using Novel Electrolyte Solutions
,”
Procedia CIRP
,
42
, pp.
367
372
.10.1016/j.procir.2016.02.200
17.
Xu
,
Z.
,
Chen
,
X.
,
Zhou
,
Z.
,
Qin
,
P.
, and
Zhu
,
D.
,
2016
, “
Electrochemical Machining of High-Temperature Titanium Alloy Ti60
,”
Procedia CIRP
,
42
, pp.
125
130
.10.1016/j.procir.2016.02.206
18.
Mitchell-Smith
,
J.
, and
Clare
,
A. T.
,
2016
, “
ElectroChemical Jet Machining of Titanium: Overcoming Passivation Layers With Ultrasonic Assistance
,”
Procedia CIRP
,
42
, pp.
379
383
.10.1016/j.procir.2016.02.215
19.
Sen
,
M.
, and
Shan
,
H. S.
,
2005
, “
A Review of Electrochemical Macro- to Micro-Hole Drilling Processes
,”
Int. J. Mach. Tools Manuf.
,
45
(
2
), pp.
137
152
.10.1016/j.ijmachtools.2004.08.005
20.
Rathod
,
V.
,
Doloi
,
B.
, and
Bhattacharyya
,
B.
,
2014
, “
Sidewall Insulation of Microtool for Electrochemical Micromachining to Enhance the Machining Accuracy
,”
Mater. Manuf. Process
,
29
(
3
), pp.
305
313
.10.1080/10426914.2013.864407
21.
Fang
,
X.
,
Qu
,
N.
,
Li
,
H.
, and
Zhu
,
D.
,
2013
, “
Enhancement of Insulation Coating Durability in Electrochemical Drilling
,”
Int. J. Adv. Manuf. Technol.
,
68
(
9–12
), pp.
2005
2013
.10.1007/s00170-013-4803-6
22.
Leese
,
R.
, and
Ivanov
,
A.
,
2018
, “
Electrochemical Micromachining: Review of Factors Affecting the Process Applicability in Micro-Manufacturing
,”
J. Eng. Manuf.
,
232
(
2
), pp.
195
207
.10.1177/0954405416640172
23.
Saxena
,
K. K.
,
Qian
,
J.
, and
Reynaerts
,
D. A.
,
2018
, “
Review on Process Capabilities of Electrochemical Micromachining and Its Hybrid Variants
,”
Int. J. Mach. Tools Manuf.
,
127
, pp.
28
56
.10.1016/j.ijmachtools.2018.01.004
24.
Chatterjee
,
S.
,
Mahapatra
,
S. S.
,
Bharadwaj
,
V.
,
Choubey
,
A.
,
Upadhyay
,
B. N.
, and
Bindra
,
K. S.
,
2019
, “
Drilling of Micro-Holes on Titanium Alloy Using Pulsed Nd:YAG Laser: Parametric Appraisal and Prediction of Performance Characteristics
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
233
(
8
), pp.
1872
1889
.10.1177/0954405418805604
25.
Sun
,
A.
,
Chang
,
Y.
, and
Liu
,
H.
,
2018
, “
Metal Micro-Hole Formation Without Recast Layer by Laser Machining and Electrochemical Machining
,”
Optik
,
171
, pp.
694
705
.10.1016/j.ijleo.2018.06.099
26.
Zhang
,
Z.
,
Feng
,
Q.
,
Cai
,
M.
,
Huang
,
L.
, and
Jiang
,
Y.
,
2015
, “
Research on Stress-Etching Complex Microstructure of Aluminum Alloy in Laser Electrochemical Machining
,”
Int. J. Adv. Manuf. Technol.
,
81
(
9–12
), pp.
2157
2165
.10.1007/s00170-015-7354-1
27.
Sun
,
A.
,
Jin
,
X.
, and
Chang
,
Y.
,
2017
, “
Research on the Process Optimization Model of Micro-Clearance Electrolysis-Assisted Laser Machining Based on BP Neural Network and Ant Colony
,”
Int. J. Adv. Manuf. Technol.
,
88
(
9–12
), pp.
3485
3498
.10.1007/s00170-016-8974-9
28.
Hasçalik
,
A.
, and
Çaydaş
,
U. A.
,
2007
, “
Comparative Study of Surface Integrity of Ti-6Al-4V Alloy Machined by EDM and AECG
,”
J. Mater. Process Technol.
,
190
(
1–3
), pp.
173
180
.10.1016/j.jmatprotec.2007.02.048
29.
Zhu
,
D.
,
Zeng
,
Y. B.
,
Xu
,
Z. Y.
, and
Zhang
,
X. Y.
,
2011
, “
Precision Machining of Small Holes by the Hybrid Process of Electrochemical Removal and Grinding
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
247
250
.10.1016/j.cirp.2011.03.130
30.
Zhu
,
X.
,
Liu
,
Y.
,
Zhang
,
J.
,
Wang
,
K.
, and
Kong
,
H.
,
2020
, “
Ultrasonic-Assisted Electrochemical Drill-Grinding of Small Holes With High-Quality
,”
J. Adv. Res.
,
23
, pp.
151
161
.10.1016/j.jare.2020.02.010
31.
Liu
,
X.
,
Zhang
,
T. C.
,
He
,
H.
,
Ouyang
,
L.
, and
Yuan
,
S.
,
2020
, “
A Stearic Acid/CeO2 Bilayer Coating on AZ31B Magnesium Alloy With Superhydrophobic and Self-Cleaning Properties for Corrosion Inhibition
,”
J. Alloys Compd.
,
834
, p.
155210
.10.1016/j.jallcom.2020.155210
32.
Liu
,
X.
,
He
,
H.
,
Zhang
,
T. C.
,
Ouyang
,
L.
,
Zhang
,
Y. X.
, and
Yuan
,
S.
,
2021
, “
Superhydrophobic and Self-Healing Dual-Function Coatings Based on Mercaptabenzimidazole Inhibitor-Loaded Magnesium Silicate Nanotubes for Corrosion Protection of AZ31B Magnesium Alloys
,”
Chem. Eng. J.
,
404
, p.
127106
.10.1016/j.cej.2020.127106
33.
Tak
,
M.
,
Singh
,
S.
, and
Mote
,
R. G.
,
2019
, “
Effect of Microstructure on Electrochemical Dissolution Characteristics of Titanium Alloys in Electrochemical Micromachining Titanium Alloy
,”
Procedia Manuf.
,
34
, pp.
362
368
.10.1016/j.promfg.2019.06.178
34.
He
,
Y.
,
Zhao
,
J.
,
Xiao
,
H.
,
Lu
,
W.
,
Gan
,
W.
,
Yin
,
F.
, and
Yang
,
Z.
,
2018
, “
Electrochemical Machining of Titanium Alloy Based on NaCl Electrolyte Solution
,”
Int. J. Electrochem. Sci.
,
13
, pp.
5736
5747
.10.20964/2018.06.31
35.
Yu
,
N.
,
Fang
,
X.
,
Meng
,
L.
,
Zeng
,
Y.
, and
Zhu
,
D.
,
2018
, “
Electrochemical Micromachining of Titanium Microstructures in an NaCl–Ethylene Glycol Electrolyte
,”
J. Appl. Electrochem.
,
48
(
3
), pp.
263
273
.10.1007/s10800-018-1145-y
36.
Liu
,
Y.
, and
Qu
,
N.
,
2019
, “
Electrochemical Milling of TB6 Titanium Alloy in NaNO3 Solution
,”
J. Electrochem. Soc.
,
166
(
2
), pp.
E35
E49
.10.1149/2.1181902jes
37.
Wanger
,
C. D.
,
1991
,
The NIST X-Ray Photoelectron Spectroscopy (XPS) Database
,
National Institute of Standards and Technology
,
Washington, DC
.
You do not currently have access to this content.