Abstract

Micro-applications, especially in biomedical and optical sectors, require the fabrication of thin polymeric parts which can be commonly realized by micro-injection molding process. However, this process is characterized by a relevant constraint regarding the tooling. Indeed, the design and manufacturing of molds could be a very time-consuming step and so, a significant limitation for the rapid development of new products. Moreover, if the design displays challenging microfeatures, their realization could involve the use of more than one mold for the fabrication of a single thin part. Therefore, proper integration of different manufacturing microtechnologies may represent an advantageous method to realize such polymeric thin microfeatures. In this work, a micromanufacturing process chain including stereolithography, micromilling, and micro-injection molding is reported. The mold for the micro-injection molding process was fabricated by means of stereolithography and micromilling, which allowed us to produce low-cost reconfigurable modular mold, composed of insert support and a removable insert. The assessment of the proposed process chain was carried out by evaluating the dimensions and the surface finishing and texturing of the milled mold cavities and molded components. Finally, a brief economic analysis compares three process chains for fabricating the micromold showing that the proposed one reduces the manufacturing cost by almost 61% with the same production time.

References

1.
Cheng
,
K.
, and
Huo
,
D.
,
2013
,
Micro-Cutting: Fundamentals and Applications
, Wiley, Chichester, UK.
2.
Azaman
,
M. D.
,
Sapuan
,
S. M.
,
Sulaiman
,
S.
,
Zainudin
,
E. S.
, and
Khalina
,
A.
,
2013
, “
Shrinkages and Warpage in the Processability of Wood-Filled Polypropylene Composite Thin-Walled Parts Formed by Injection Molding
,”
Mater. Des.
,
52
, pp.
1018
1026
.10.1016/j.matdes.2013.06.047
3.
Kim
,
D. H.
, and
Song
,
Y. S.
,
2019
, “
Micro-Injection Molding Using a Polymer Coated Mold
,”
Microsyst. Technol.
,
25
(
10
), pp.
4011
4017
.10.1007/s00542-019-04320-7
4.
Liao
,
Q.
,
Zhou
,
C.
,
Lu
,
Y.
,
Wu
,
X.
,
Chen
,
F.
, and
Lou
,
Y.
,
2019
, “
Efficient and Precise Micro-Injection Molding of Micro-Structured Polymer Parts Using Micro-Machined Mold Core by WEDM
,”
Polymer (Basel)
,
11
(
10
), p.
1591
.10.3390/polym11101591
5.
Surace
,
R.
,
Bellantone
,
V.
,
Trotta
,
G.
, and
Fassi
,
I.
,
2017
, “
Replicating Capability Investigation of Micro Features in Injection Moulding Process
,”
J. Manuf. Process.
,
28
, pp.
351
361
.10.1016/j.jmapro.2017.07.004
6.
Bellantone
,
V.
,
Surace
,
R.
,
Trotta
,
G.
, and
Fassi
,
I.
,
2013
, “
Replication Capability of Micro Injection Moulding Process for Polymeric Parts Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1407
1421
.10.1007/s00170-012-4577-2
7.
Lu
,
Y.
,
Chen
,
F.
,
Wu
,
X.
,
Zhou
,
C.
,
Lou
,
Y.
, and
Li
,
L.
,
2019
, “
Fabrication of Micro-Structured Polymer by Micro Injection Molding Based on Precise Micro-Ground Mold Core
,”
Micromachines
,
10
(
4
), p.
253
.10.3390/mi10040253
8.
Lu
,
Y.
,
Chen
,
F.
,
Wu
,
X.
,
Zhou
,
C.
,
Zhao
,
H.
,
Li
,
L.
, and
Tang
,
Y.
,
2019
, “
Precise WEDM of Micro-Textured Mould for Micro-Injection Molding of Hydrophobic Polymer Surface
,”
Mater. Manuf. Process.
,
34
(
12
), pp.
1342
1351
.10.1080/10426914.2019.1660784
9.
Rötting
,
O.
,
Röpke
,
W.
,
Becker
,
H.
, and
Gärtner
,
C.
,
2002
, “
Polymer Microfabrication Technologies
,”
Microsyst. Technol.
,
8
(
1
), pp.
32
36
.10.1007/s00542-002-0106-9
10.
Attia
,
U. M.
,
Marson
,
S.
, and
Alcock
,
J. R.
,
2009
, “
Micro-Injection Moulding of Polymer Microfluidic Devices
,”
Microfluid. Nanofluid.
,
7
(
1
), pp.
1
28
.10.1007/s10404-009-0421-x
11.
Regi
,
F.
,
Basso
,
A.
,
Kain
,
M.
,
Loaldi
,
D.
,
Li
,
D.
,
Zhang
,
Y.
, and
Tosello
,
G.
,
2020
, “
Influences of Micro-Ridges Orientation and Position on the Replication of Micro-Structured Surfaces by Injection Molding
,”
AIP Conference Proceedings
2205,
American Institute of Physics
, Çeşme, Turkey, May 26–30, p. 020013. 10.1063/1.5142928
12.
Sorgato
,
M.
,
Zanini
,
F.
,
Masato
,
D.
, and
Lucchetta
,
G.
,
2020
, “
Submicron Laser-Textured Vents for Self-Cleaning Injection Molds
,”
J. Appl. Polym. Sci.
,
137
(
42
), p.
49280
.10.1002/app.49280
13.
Zhang
,
N.
,
Liu
,
J.
,
Zhang
,
H.
,
Kent
,
N. J.
,
Diamond
,
D.
, and
Gilchrist
,
M. D.
,
2019
, “
3D Printing of Metallic Microstructured Mould Using Selective Laser Melting for Injection Moulding of Plastic Microfluidic Devices
,”
Micromachines
,
10
(
9
), p.
595
.10.3390/mi10090595
14.
León-Cabezas
,
M. A.
,
Martínez-García
,
A.
, and
Varela-Gandía
,
F. J.
,
2017
, “
Innovative Advances in Additive Manufactured Moulds for Short Plastic Injection Series
,”
Procedia Manuf.
,
13
, pp.
732
737
.10.1016/j.promfg.2017.09.124
15.
Tosello
,
G.
,
Fillon
,
B.
,
Azcarate
,
S.
,
Schoth
,
A.
,
Mattsson
,
L.
,
Griffiths
,
C.
,
Staemmler
,
L.
, and
Bolt
,
P. J.
,
2007
, “
Hybrid Tooling Technologies and Standardization for the Manufacturing of Inserts for Micro Injection Molding
,”
Annual Technical Conference—ANTEC
, Vol.
5
, Cincinnati, OH, May 6–11, pp.
2946
2950
.
16.
Basinger
,
K.
,
Webster
,
C.
,
Keough
,
C.
,
Wysk
,
R.
, and
Harrysson
,
O.
,
2020
, “
Advanced Manufacturing Using Linked Processes: Hybrid Manufacturing
,”
Mass Production Processes
,
IntechOpen
, London, UK.
17.
Saxena
,
P.
,
Bissacco
,
G.
,
Meinert
,
K. Æ.
,
Danielak
,
A. H.
,
Ribó
,
M. M.
, and
Pedersen
,
D. B.
,
2020
, “
Soft Tooling Process Chain for the Manufacturing of Micro-Functional Features on Molds Used for Molding of Paper Bottles
,”
J. Manuf. Process.
,
54
, pp.
129
137
.10.1016/j.jmapro.2020.03.008
18.
Zhang
,
Y.
,
Pedersen
,
D. B.
,
Gøtje
,
A. S.
,
Mischkot
,
M.
, and
Tosello
,
G.
,
2017
, “
A Soft Tooling Process Chain Employing Additive Manufacturing for Injection Molding of a 3D Component With Micro Pillars
,”
J. Manuf. Process.
,
27
, pp.
138
144
.10.1016/j.jmapro.2017.04.027
19.
Büttner
,
H.
,
Maradia
,
U.
,
Suarez
,
M.
,
Stirnimann
,
J.
, and
Wegener
,
K.
,
2020
, “
Development of Process Chain for Micro-Injection Molding
,”
Procedia CIRP
,
95
, pp.
584
589
.10.1016/j.procir.2020.03.147
20.
Biondani
,
F. G.
,
Bissacco
,
G.
,
Mohanty
,
S.
,
Tang
,
P. T.
, and
Nørgaard Hansen
,
H.
,
2020
, “
Multi-Metal Additive Manufacturing Process Chain for Optical Quality Mold Generation
,”
J. Mater. Process. Technol.
,
277
, p.
116451
.10.1016/j.jmatprotec.2019.116451
21.
Tosello
,
G.
,
Bissacco
,
G.
,
Tang
,
P. T.
,
Hansen
,
H. N.
, and
Nielsen
,
P. C.
,
2008
, “
High Aspect Ratio Micro Tool Manufacturing for Polymer Replication Using ΜeDM of Silicon, Selective Etching and Electroforming
,”
Microsyst. Technol.
,
14
(
9–11
), pp.
1757
1764
.10.1007/s00542-008-0564-9
22.
Gülçür
,
M.
,
Romano
,
J. M.
,
Penchev
,
P.
,
Gough
,
T.
,
Brown
,
E.
,
Dimov
,
S.
, and
Whiteside
,
B.
,
2021
, “
A Cost-Effective Process Chain for Thermoplastic Microneedle Manufacture Combining Laser Micro-Machining and Micro-Injection Moulding
,”
CIRP J. Manuf. Sci. Technol.
,
32
, pp.
311
321
.10.1016/j.cirpj.2021.01.015
23.
Chong
,
L.
,
Ramakrishna
,
S.
, and
Singh
,
S.
,
2018
, “
A Review of Digital Manufacturing-Based Hybrid Additive Manufacturing Processes
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2281
2300
.10.1007/s00170-017-1345-3
24.
Rahmati
,
S.
, and
Dickens
,
P.
,
2007
, “
Rapid Tooling Analysis of Stereolithography Injection Mould Tooling
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
740
747
.10.1016/j.ijmachtools.2006.09.022
25.
Popov
,
K. B.
,
Dimov
,
S. S.
,
Pham
,
D. T.
,
Minev
,
R. M.
,
Rosochowski
,
A.
, and
Olejnik
,
L.
,
2006
, “
Micromilling: Material Microstructure Effects
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
220
(
11
), pp.
1807
1813
.10.1243/09544054JEM683
26.
Bissacco
,
G.
,
Hansen
,
H. N.
, and
De Chiffre
,
L.
,
2005
, “
Micromilling of Hardened Tool Steel for Mould Making Applications
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
201
207
.10.1016/j.jmatprotec.2005.05.029
27.
Attanasio
,
A.
,
2017
, “
Tool Run-Out Measurement in Micro Milling
,”
Micromachines
,
8
(
7
), p.
221
.10.3390/mi8070221
28.
Yuan
,
Y.
,
Jing
,
X.
,
Ehmann
,
K. F.
, and
Zhang
,
D.
,
2018
, “
Surface Roughness Modeling in Micro End-Milling
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
1655
1664
.10.1007/s00170-017-1278-x
29.
Jing
,
X.
,
Li
,
H.
,
Wang
,
J.
,
Yuan
,
Y.
,
Zhang
,
D.
,
Kwok
,
N.
, and
Nguyen
,
T.
,
2017
, “
An Investigation of Surface Roughness in Micro-End-Milling of Metals
,”
Aust. J. Mech. Eng.
,
15
(
3
), pp.
166
174
.10.1080/14484846.2016.1211472
30.
Zhang
,
X.
,
Yu
,
T.
, and
Zhao
,
J.
,
2020
, “
Surface Generation Modeling of Micro Milling Process With Stochastic Tool Wear
,”
Precis. Eng.
,
61
, pp.
170
181
.10.1016/j.precisioneng.2019.10.015
31.
Sun
,
Z.
, and
To
,
S.
,
2018
, “
Effect of Machining Parameters and Toolwear on Surface Uniformity in Micro-Milling
,”
Micromachines
,
9
(
6
), p.
268
.10.3390/mi9060268
32.
Wang
,
W.
,
Kweon
,
S. H.
, and
Yang
,
S. H.
,
2005
, “
A Study on Roughness of the Micro-End-Milled Surface Produced by a Miniatured Machine Tool
,”
J. Mater. Process. Technol.
,
162–163
, pp.
702
708
.10.1016/j.jmatprotec.2005.02.141
33.
Sodemann
,
A.
,
Li
,
M.
,
Mayor
,
R.
, and
Forest
,
C. R.
,
2009
, “
Micromilling of Molds for Microfluidic Blood Diagnostic Devices
,”
Proceedings of 24th Annual Meeting American Society for Precision Engineering ASPE
, Monterey, CA, Oct. 4–9, p. M3.https://www.researchgate.net/publication/216264359_Micromilling_of_molds_for_microfluidic_blood_diagnostic_devices
34.
Vázquez
,
E.
,
Amaro
,
A.
,
Ciurana
,
J.
, and
Rodríguez
,
C. A.
,
2015
, “
Process Planning Considerations for Micromilling of Mould Cavities Used in Ultrasonic Moulding Technology
,”
Precis. Eng.
,
39
, pp.
252
260
.10.1016/j.precisioneng.2014.07.001
35.
Chen
,
P. C.
,
Chen
,
Y. C.
,
Pan
,
C. W.
, and
Li
,
K. M.
,
2015
, “
Parameter Optimization of Micromilling Brass Mold Inserts for Microchannels With Taguchi Method
,”
Int. J. Precis. Eng. Manuf.
,
16
(
4
), pp.
647
651
.10.1007/s12541-015-0086-1
36.
Davoudinejad
,
A.
,
Li
,
D.
,
Zhang
,
Y.
, and
Tosello
,
G.
,
2020
, “
Effect of Progressive Tool Wear on the Functional Performance of Micro Milling Process of Injection Molding Tool
,”
Procedia CIRP
,
87
, pp.
159
163
.10.1016/j.procir.2020.02.031
37.
Surace
,
R.
,
Sorgato
,
M.
,
Bellantone
,
V.
,
Modica
,
F.
,
Lucchetta
,
G.
, and
Fassi
,
I.
,
2019
, “
Effect of Cavity Surface Roughness and Wettability on the Filling Flow in Micro Injection Molding
,”
J. Manuf. Process.
,
43
, pp.
105
111
.10.1016/j.jmapro.2019.04.032
38.
Bellantone
,
V.
,
Surace
,
R.
,
Modica
,
F.
, and
Fassi
,
I.
,
2018
, “
Evaluation of Mold Roughness Influence on Injected Thin Micro-Cavities
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
4565
4575
.10.1007/s00170-017-1178-0
39.
Bártolo
,
P. J.
,
2011
,
Stereolithography—Materials, Processes and Applications
,
Springer
, Boston, MA, p.
340
.
40.
Valori
,
M.
,
Surace
,
R.
,
Basile
,
V.
,
Luzi
,
L.
,
Vertechy
,
R.
, and
Fassi
,
I.
,
2020
, “
Rapid Fabrication of POM Flexure Hinges Via a Combined Injection Molding and Stereolithography Approach
,”
ASME
Paper No. DETC2020-22476.10.1115/DETC2020-22476
41.
Bagalkot
,
A.
,
Pons
,
D.
,
Symons
,
D.
, and
Clucas
,
D.
,
2019
, “
Categorization of Failures in Polymer Rapid Tools Used for Injection Molding
,”
Processes
,
7
(
1
), p.
17
.10.3390/pr7010017
You do not currently have access to this content.