Abstract

Microneedle arrays contain needlelike microscopic structures, which facilitate drug or vaccine delivery in a minimally invasive way. However, producing hollow microneedles is currently limited by expensive, time consuming and complex microfabrication techniques. In this paper, a novel method to produce hollow polymer microneedles is presented. This method utilizes a femtosecond laser to create hollow microneedle cavities in a mold insert. This mold insert is used in an injection molding process to replicate polymethyl methacrylate microneedles. The combined effect of the mold temperature, volumetric injection rate, and melt temperature on the replication fidelity was evaluated. It was found that the combination of high injection molding parameters facilitated the replication. Furthermore, the functionality of the manufactured hollow microneedles was successfully tested by injecting a controlled flow of colored water into an agarose matrix. The developed methodology enables the production of low-cost, high-volume microneedle devices, which could be a key asset for large scale vaccination campaigns.

References

1.
Hegde
,
N. R.
,
Kaveri
,
S. V.
, and
Bayry
,
J.
,
2011
, “
Recent Advances in the Administration of Vaccines for Infectious Diseases: Microneedles as Painless Delivery Devices for Mass Vaccination
,”
Drug Discov. Today
,
16
(
23–24
), pp.
1061
1068
.10.1016/j.drudis.2011.07.004
2.
Zuckerman
,
J. N.
,
2000
, “
The Importance of Injecting Vaccines Into Muscle
,”
Br. Med. J.
,
321
(
7271
), pp.
1237
1238
.10.1136/bmj.321.7271.1237
3.
Tucak
,
A.
,
Sirbubalo
,
M.
,
Hindija
,
L.
,
Rahić
,
O.
,
Hadžiabdić
,
J.
,
Muhamedagić
,
K.
,
Čekić
,
A.
, and
Vranić
,
E.
,
2020
, “
Microneedles: Characteristics, Materials, Production Methods and Commercial Development
,”
Micromachines
,
11
(
11
), p.
961
.10.3390/mi11110961
4.
Donnelly
,
R. F.
,
Singh
,
T. R. R.
,
Larrañeta
,
E.
, and
McCrudden
,
M. T. C.
,
2018
, Microneedles for Drug and Vaccine Delivery and Patient Monitoring, John Wiley & Sons, Ltd, Chichester, UK
.
5.
Guillot
,
A. J.
,
Cordeiro
,
A. S.
,
Donnelly
,
R. F.
,
Montesinos
,
M. C.
,
Garrigues
,
T. M.
, and
Melero
,
A.
,
2020
, “
Microneedle‐Based Delivery: An Overview of Current Applications and Trends
,”
Pharmaceutics
,
12
:
1
(
6
), p.
569
.10.3390/pharmaceutics12060569
6.
Mooney
,
K.
,
McElnay
,
J. C.
, and
Donnelly
,
R. F.
,
2014
, “
Children's Views on Microneedle Use as an Alternative to Blood Sampling for Patient Monitoring
,”
Int. J. Pharm. Pract.
,
22
(
5
), pp.
335
344
.10.1111/ijpp.12081
7.
Cross
,
S.
, and
Roberts
,
M.
,
2004
, “
Physical Enhancement of Transdermal Drug Application: Is Delivery Technology Keeping Up With Pharmaceutical Development?
Curr. Drug Deliv.
,
1
(
1
), pp.
81
92
.10.2174/1567201043480045
8.
Simonsen
,
L.
,
Kane
,
A.
,
Lloyd
,
J.
,
Zaffran
,
M.
, and
Kane
,
M.
,
1999
, “
Unsafe Injections in the Developing World and Transmission of Bloodborne Pathogens: A Review
,”
Bull World Health Organ.
,
77
(
10
), pp.
789
800.
https://apps.who.int/iris/handle/10665/267927
9.
Cheung
,
K.
, and
Das
,
D. B.
,
2016
, “
Microneedles for Drug Delivery: Trends and Progress
,”
Drug Deliv.
,
23
(
7
), pp.
2338
2354
.10.3109/10717544.2014.986309
10.
Paudel
,
K. S.
,
Milewski
,
M.
,
Swadley
,
C. L.
,
Brogden
,
N. K.
,
Ghosh
,
P.
, and
Stinchcomb
,
A. L.
,
2010
, “
Challenges and Opportunities in Dermal/Transdermal Delivery
,”
Ther. Deliv.
,
1
(
1
), pp.
109
131
.10.4155/tde.10.16
11.
Juster
,
H.
,
Aar
,
B.
, and
Brouwer
,
H.
,
2019
, “
A Review on Microfabrication of Thermoplastic Polymer-Based Microneedle Arrays
,”
Polym. Eng. Sci.
,
59
(
5
), pp.
877
890
.10.1002/pen.25078
12.
Li
,
X. (J. ).
, and
Zhou
,
Y.
,
2013
, “
Microfluidic Devices for Biomedical Applications
,”
Woodhead Publishing Series in Biomaterials
,
Woodhead Publishing Limited
,
Cambridge
, pp.
1
652
.
13.
Kim
,
E.
,
Erdos
,
G.
,
Huang
,
S.
,
Kenniston
,
T. W.
,
Balmert
,
S. C.
,
Carey
,
C. D.
,
Raj
,
S.
,
Epperly
,
M.
,
Klimstra
,
W.
,
Haagmans
,
B.
,
Korkmaz
,
E.
,
Falo
,
L.
, and
Gambotto
,
A.
,
2020
, “
Microneedle Array Delivered Recombinant Coronavirus Vaccines: Immunogenicity and Rapid Translational Development
,”
EBioMedicine
,
55
, p.
102743
.10.1016/j.ebiom.2020.102743
14.
Evens
,
T.
,
Malek
,
O.
,
Castagne
,
S.
,
Seveno
,
D.
, and
Van Bael
,
A. A.
,
2020
, “
Novel Method for Producing Solid Polymer Microneedles Using Laser Ablated Moulds in an Injection Moulding Process
,”
Manuf. Lett.
,
24
, pp.
29
32
.10.1016/j.mfglet.2020.03.009
15.
Roxhed
,
N.
,
Griss
,
P.
, and
Stemme
,
G.
,
2008
, “
Membrane-Sealed Hollow Microneedles and Related Administration Schemes for Transdermal Drug Delivery
,”
Biomed. Microdev.
,
10
(
2
), pp.
271
279
.10.1007/s10544-007-9133-8
16.
Gupta
,
J.
,
Felner
,
E. I.
, and
Prausnitz
,
M. R.
,
2009
, “
Erratum: Minimally Invasive Insulin Delivery in Subjects With Type 1 Diabetes Using Hollow Microneedles
,”
Diabetes Technol. Ther.
,
11
(
6
), pp.
329
337
.10.1089/dia.2008.0103
17.
Ma
,
B.
,
Liu
,
S.
,
Gan
,
Z.
,
Liu
,
G.
,
Cai
,
X.
,
Zhang
,
H.
, and
Yang
,
Z.
,
2006
, “
A PZT Insulin Pump Integrated With a Silicon Microneedle Array for Transdermal Drug Delivery
,”
Microfluid. Nanofluid.
,
2
(
5
), pp.
417
423
.10.1007/s10404-006-0083-x
18.
Giri Nandagopal
,
M. S.
,
Antony
,
R.
,
Rangabhashiyam
,
S.
,
Sreekumar
,
N.
, and
Selvaraju
,
N.
,
2014
, “
Overview of Microneedle System: A Third Generation Transdermal Drug Delivery Approach
,”
Microsyst. Technol.
,
20
(
7
), pp.
1249
1272
.10.1007/s00542-014-2233-5
19.
Faraji Rad
,
Z.
,
Nordon
,
R. E.
,
Anthony
,
C. J.
,
Bilston
,
L.
,
Prewett
,
P. D.
,
Arns
,
J.-Y.
,
Arns
,
C.
,
Zhang
,
L.
, and
Davies
,
G.
,
2017
, “
High-Fidelity Replication of Thermoplastic Microneedles With Open Microfluidic Channels
,”
Microsyst. Nanoeng.
,
3
, pp.
1
11
.10.1038/micronano.2017.34
20.
Liu
,
Y.
,
Eng
,
P. F.
,
Guy
,
O. J.
,
Roberts
,
K.
,
Ashraf
,
H.
, and
Knight
,
N.
,
2013
, “
Advanced Deep Reactive-Ion Etching Technology for Hollow Microneedles for Transdermal Blood Sampling and Drug Delivery
,”
IET Nanobiotechnol.
,
7
(
2
), pp.
59
62
.10.1049/iet-nbt.2012.0018
21.
Wang
,
P. C.
,
Wester
,
B. A.
,
Rajaraman
,
S.
,
Paik
,
S. J.
,
Kim
,
S. H.
, and
Allen
,
M. G.
,
2009
, “
Hollow Polymer Microneedle Array Fabricated by Photolithography Process Combined With Micromolding Technique
,”
Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Minneapolis, MN, Nov. 13, pp.
7026
7029
.10.1109/IEMBS.2009.5333317
22.
Martanto
,
W.
,
Moore
,
J. S.
,
Kashlan
,
O.
,
Kamath
,
R.
,
Wang
,
P. M.
,
O'Neal
,
J. M.
, and
Prausnitz
,
M. R.
,
2006
, “
Microinfusion Using Hollow Microneedles
,”
Pharm. Res.
,
23
(
1
), pp.
104
113
.10.1007/s11095-005-8498-8
23.
Yeung
,
C.
,
Chen
,
S.
,
King
,
B.
,
Lin
,
H.
,
King
,
K.
,
Akhtar
,
F.
,
Diaz
,
G.
,
Wang
,
B.
,
Zhu
,
J.
,
Sun
,
W.
,
Khademhosseini
,
A.
, and
Emaminejad
,
S.
,
2019
, “
A 3D-Printed Microfluidic-Enabled Hollow Microneedle Architecture for Transdermal Drug Delivery
,”
Biomicrofluidics
,
13
(
6
), p.
064125
.10.1063/1.5127778
24.
Ceyssens
,
F.
,
Chaudhri
,
B. P.
,
Van Hoof
,
C.
, and
Puers
,
R.
,
2013
, “
Fabrication Process for Tall, Sharp, Hollow, High Aspect Ratio Polymer Microneedles on a Platform
,”
J. Micromech. Microeng.
,
23
(
7
), p.
075023
.10.1088/0960-1317/23/7/075023
25.
Krieger
,
K. J.
,
Bertollo
,
N.
,
Dangol
,
M.
,
Sheridan
,
J. T.
,
Lowery
,
M. M.
, and
O'Cearbhaill
,
E. D.
,
2019
, “
Simple and Customizable Method for Fabrication of High-Aspect Ratio Microneedle Molds Using Low-Cost 3D Printing
,”
Microsyst. Nanoeng.
,
5
, p.
42
.10.1038/s41378-019-0088-8
26.
Trautmann
,
A.
,
Roth
,
G. L.
,
Nujiqi
,
B.
,
Walther
,
T.
, and
Hellmann
,
R.
,
2019
, “
Towards a Versatile Point-of-Care System Combining Femtosecond Laser Generated Microfluidic Channels and Direct Laser Written Microneedle Arrays
,”
Microsyst. Nanoeng.
,
5
, p. 6.10.1038/s41378-019-0046-5
27.
Bodhale
,
D. W.
,
Nisar
,
A.
, and
Afzulpurkar
,
N.
,
2010
, “
Structural and Microfluidic Analysis of Hollow Side-Open Polymeric Microneedles for Transdermal Drug Delivery Applications
,”
Microfluid. Nanofluid.
,
8
(
3
), pp.
373
392.
10.1007/s10404-009-0467-9
28.
Luttge
,
R.
,
Berenschot
,
E. J. W.
,
de Boer
,
M. J.
,
Altpeter
,
D. M.
,
Vrouwe
,
E. X.
,
van den Berg
,
A.
, and
Elwenspoek
,
M.
,
2007
, “
Integrated Lithographic Molding for Microneedle-Based Devices
,”
J. Microelectromech. Syst.
,
16
(
4
), pp.
872
884
.10.1109/JMEMS.2007.899339
29.
Frazer
,
R. Q.
,
Byron
,
R. T.
,
Osborne
,
P. B.
, and
West
,
K. P.
,
2005
, “
PMMA: An Essential Material in Medicine and Dentistry
,”
J. Long Term Eff. Med. Implants
,
15
(
6
), pp.
629
639
.10.1615/JLongTermEffMedImplants.v15.i6.60
30.
Evens
,
T.
,
Malek
,
O.
,
Castagne
,
S.
,
Seveno
,
D.
, and
Van
,
B. A.
,
2021
, “
Controlling the Geometry of Laser Ablated Microneedle Cavities in Different Mould Materials and Assessing the Replication Fidelity Within Polymer Injection Moulding
,”
J. Manuf. Process
,
62
, pp.
535
545
.10.1016/j.jmapro.2020.12.035
31.
Audouard
,
E.
, and
Mottay
,
E.
,
2016
, “
Engineering Model for Ultrafast Laser Microprocessing
,”
J. Phys. D. Appl. Phys.
,
9740
(
1
), pp. 1–14.10.1117/12.2206203
32.
Cheng
,
J.
,
Perrie
,
W.
,
Edwardson
,
S. P.
,
Fearon
,
E.
,
Dearden
,
G.
, and
Watkins
,
K. G.
,
2009
, “
Effects of Laser Operating Parameters on Metals Micromachining With Ultrafast Lasers
,”
Appl. Surf. Sci.
,
256
(
5
), pp.
1514
–15
20
.10.1016/j.apsusc.2009.09.013
33.
Tosello
,
G.
,
2018
,
Micro Injection Molding
,
Carl Hanser Verlag GmbH & Co. KG
,
München, Germany
.
34.
Attia
,
U. M.
,
Marson
,
S.
, and
Alcock
,
J. R.
,
2009
, “
Micro-Injection Moulding of Polymer Microfluidic Devices
,”
Microfluid. Nanofluid.
,
7
(
1
), pp.
1
28
.10.1007/s10404-009-0421-x
35.
Baruffi
,
F.
,
Gülçür
,
M.
,
Calaon
,
M.
,
Romano
,
J. M.
,
Penchev
,
P.
,
Dimov
,
S.
,
Whiteside
,
B.
, and
Tosello
,
G.
,
2019
, “
Correlating Nano-Scale Surface Replication Accuracy and Cavity Temperature in Micro-Injection Moulding Using In-Line Process Control and High-Speed Thermal Imaging
,”
J. Manuf. Process
,
47
, pp.
367
–3
81
.10.1016/j.jmapro.2019.08.017
36.
Masato
,
D.
,
Sorgato
,
M.
, and
Lucchetta
,
G.
,
2017
, “
Characterization of the Micro Injection-Compression Molding Process for the Replication of High Aspect Ratio Micro-Structured Surfaces
,”
Microsyst. Technol.
,
23
(
8
), pp.
3661
3670
.10.1007/s00542-016-3149-z
37.
Gornik
,
C.
,
2004
, “
Injection Moulding of Parts With Microstructured Surfaces for Medical Applications
,”
Macromol. Symp.
,
217
(
1
), pp.
365
374
.10.1002/masy.200451332
38.
Rytka
,
C.
,
Kristiansen
,
P. M.
, and
Neyer
,
A.
,
2015
, “
Iso- and Variothermal Injection Compression Moulding of Polymer Micro- and Nanostructures for Optical and Medical Applications
,”
J. Micromech. Microeng.
,
25
(
6
), pp.
065008
065016
.10.1088/0960-1317/25/6/065008
39.
Sorgato
,
M.
, and
Lucchetta
,
G.
,
2015
, “
The Evaluation of Vacuum Venting and Variotherm Process for Improving the Replication by Injection Molding of High Aspect Ratio Micro Features for Biomedical Application
,”
AIP Conf. Proc.
,
1664
, p.
1664
. 10.1063/1.4918483
40.
Vera
,
J.
,
Brulez
,
A. C.
,
Contraires
,
E.
,
Larochette
,
M.
,
Trannoy-Orban
,
N.
,
Pignon
,
M.
,
Mauclair
,
C.
,
Valette
,
S.
, and
Benayoun
,
S.
,
2018
, “
Factors Influencing Microinjection Molding Replication Quality
,”
J. Micromech. Microeng.
,
28
, p.
015004
.10.1088/1361-6439/aa9a4e
41.
Packianather
,
M.
,
Griffiths
,
C.
, and
Kadir
,
W.
,
2015
, “
Micro Injection Moulding Process Parameter Tuning
,”
Procedia CIRP
,
33
, pp.
400
405
.10.1016/j.procir.2015.06.093
42.
Kazmer
,
D. O.
,
2007
,
Injection Mold Design Engineering
,
Carl Hanser Verlag GmbH & Co. KG
,
München, Germany
.
43.
Hill
,
S. D. J.
,
Kämper
,
K. P.
,
Dasbach
,
U.
,
Döpper
,
J.
,
Erhfeld
,
W.
, and
Kaupert
,
M.
,
1995
, “
An Investigation of Computer Modelling for Micro-Injection Moulding
,”
Proceedings of Microsym'95
, Vol.
12
, WIT Press, pp.
275
2883
.
44.
Zhang
,
D.
,
Das
,
D. B.
, and
Rielly
,
C. D.
,
2014
, “
Microneedle Assisted Micro-Particle Delivery From Gene Guns: Experiments Using Skin-Mimicking Agarose Gel
,”
J. Pharm. Sci.
,
103
(
2
), pp.
613
–6
27
.10.1002/jps.23835
45.
Dal Dosso
,
F.
,
Kokalj
,
T.
,
Belotserkovsky
,
J.
,
Spasic
,
D.
, and
Lammertyn
,
J.
,
2018
, “
Self-Powered Infusion Microfluidic Pump for Ex Vivo Drug Delivery
,”
Biomed. Microdev.
,
20
(
2
), pp.
1
11
.10.1007/s10544-018-0289-1
You do not currently have access to this content.