Abstract

Feedstock powders used in binder jetting additive manufacturing include nanopowder, micropowder, and granulated powder. Two important characteristics of the feedstock powders are flowability and sinterability. This paper aims to compare the flowability and sinterability of different feedstock powders. Three powders were compared: nanopowder (with a particle size of ∼100 nm), micropowder (with a particle size of 70 μm), and granulated powder (with a granule size of ∼70 μm) made from the nanopowder by spray freeze drying. Flowability metrics employed included apparent density (AD), tap density (TD), volumetric flow rate (VFR), mass flow rate (MFR), Hausner ratio (HR), Carr index (CI), and repose angle (RA). Sinterability metrics employed included sintered bulk density (SBD), volumetric shrinkage (VS), and densification ratio (DR). Results show that the granulated powder has a higher flowability than the nanopowder and a higher sinterability than the micropowder. Moreover, different flowability metric values of the granulated powder are close to those of the micropowder, indicating that these two powers have a comparably high flowability. Similarly, different sinterability metric values of the granulated powder are close to those of the nanopowder, indicating that these two powders have a comparably high sinterability.

References

1.
ASTM International/International Standard
,
2015
, “
Additive Manufacturing — General Principles — Terminology
,” ASTM, West Conshohocken, PA, Standard No. ISO/ASTM 52900:2015.
2.
Du
,
W.
,
Ren
,
X.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p. 040801
.10.1115/1.4046248
3.
Li
,
M.
,
Du
,
W.
,
Elwany
,
A.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Metal Binder Jetting Additive Manufacturing: A Literature Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
090801
.10.1115/1.4047430
4.
Qian
,
C.
, and
Sun
,
J.
,
2013
, “
Fabrication of the Porous Hydroxyapatite Implant by 3D Printing
,”
J. Ceram. Process. Res.
,
14
(
4
), pp.
513
516
.http://www.jcpr.or.kr/journal/archive/view/1449
5.
Tarafder
,
S.
,
Davies
,
N. M.
,
Bandyopadhyay
,
A.
, and
Bose
,
S.
,
2013
, “
3D Printed Tricalcium Phosphate Bone Tissue Engineering Scaffolds: Effect of SrO and MgO Doping on In Vivo Osteogenesis in a Rat Distal Femoral Defect Model
,”
Biomater. Sci.
,
1
(
12
), pp.
1250
1259
.10.1039/c3bm60132c
6.
Tarafder
,
S.
,
Dernell
,
W. S.
,
Bandyopadhyay
,
A.
, and
Bose
,
S.
,
2015
, “
SrO- and MgO-Doped Microwave Sintered 3D Printed Tricalcium Phosphate Scaffolds: Mechanical Properties and In Vivo Osteogenesis in a Rabbit Model
,”
J. Biomed. Mater. Res. Part B Appl. Biomater.
,
103
(
3
), pp.
679
690
.10.1002/jbm.b.33239
7.
Miao
,
G.
,
Du
,
W.
,
Moghadasi
,
M.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Ceramic Binder Jetting Additive Manufacturing: Effects of Granulation on Properties of Feedstock Powder and Printed and Sintered Parts
,”
Addit. Manuf.
,
36
, p.
101542
.10.1016/j.addma.2020.101542
8.
Bai
,
Y.
,
Wagner
,
G.
, and
Williams
,
C. B.
,
2015
, “
Effect of Bimodal Powder Mixture on Powder Packing Density and Sintered Density in Binder Jetting of Metals
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 10–12, pp.
758
771
.http://utw10945.utweb.utexas.edu/sites/default/files/2015/2015-62-Bai.pdf
9.
Butscher
,
A.
,
Bohner
,
M.
,
Roth
,
C.
,
Ernstberger
,
A.
,
Heuberger
,
R.
,
Doebelin
,
N.
,
Rudolf Von Rohr
,
P.
, and
Müller
,
R.
,
2012
, “
Printability of Calcium Phosphate Powders for Three-Dimensional Printing of Tissue Engineering Scaffolds
,”
Acta Biomater.
,
8
(
1
), pp.
373
385
.10.1016/j.actbio.2011.08.027
10.
Zocca
,
A.
,
Gomes
,
C. M.
,
Bernardo
,
E.
,
Muller
,
R.
,
Gunster
,
J.
, and
Colombo
,
P.
,
2013
, “
LAS Glass-Ceramic Scaffolds by Three-Dimensional Printing
,”
J. Eur. Ceram. Soc.
,
33
(
9
), pp.
1525
1533
.10.1016/j.jeurceramsoc.2012.12.012
11.
Lanzetta
,
M.
, and
Sachs
,
E.
,
2001
, “
The Line Formation With Alumina Powders in Drop on Demand Three Dimensional Printing
,”
The First International Seminar on Progress in Innovative Manufacturing Engineering
, Sestri Levante, Italy, June 20–22, pp.
197
204
.https://core.ac.uk/download/pdf/80233004.pdf
12.
Sun
,
C.
,
Tian
,
X.
,
Wang
,
L.
,
Liu
,
Y.
,
Wirth
,
C. M.
,
Günster
,
J.
,
Li
,
D.
, and
Jin
,
Z.
,
2017
, “
Effect of Particle Size Gradation on the Performance of Glass-Ceramic 3D Printing Process
,”
Ceram. Int.
,
43
(
1
), pp.
578
584
.10.1016/j.ceramint.2016.09.197
13.
Du
,
W.
,
Ren
,
X.
,
Chen
,
Y.
,
Ma
,
C.
,
Radovic
,
M.
, and
Pei
,
Z.
,
2018
, “
Model Guided Mixing of Ceramic Powders With Graded Particle Sizes in Binder Jetting Additive Manufacturing
,”
ASME
Paper No. MSEC2018-6651.10.1115/MSEC2018-6651
14.
Du
,
W.
,
Roa
,
J.
,
Hong
,
J.
,
Liu
,
Y.
,
Pei
,
Z.
, and
Ma
,
C.
,
2021
, “
Binder Jetting Additive Manufacturing: Effect of Particle Size Distribution on Density
,”
ASME J. Manuf. Sci. Eng.
,
143
(
9
), p.
091002
.10.1115/1.4050306
15.
Suwanprateeb
,
J.
,
Sanngam
,
R.
, and
Panyathanmaporn
,
T.
,
2010
, “
Influence of Raw Powder Preparation Routes on Properties of Hydroxyapatite Fabricated by 3D Printing Technique
,”
Mater. Sci. Eng. C
,
30
(
4
), pp.
610
617
.10.1016/j.msec.2010.02.014
16.
Irsen
,
S. H.
,
Leukers
,
B.
,
Höckling
,
C.
,
Tille
,
C.
, and
Seitz
,
H.
,
2006
, “
Bioceramic Granulates for Use in 3D Printing: Process Engineering Aspects
,”
Mater. Werkst.
,
37
(
6
), pp.
533
537
.10.1002/mawe.200600033
17.
Gildenhaar
,
R.
,
Knabe
,
C.
,
Gomes
,
C.
,
Linow
,
U.
,
Houshmand
,
A.
, and
Berger
,
G.
,
2011
, “
Calcium Alkaline Phosphate Scaffolds for Bone Regeneration 3D-Fabricated by Additive Manufacturing
,”
Key Eng. Mater.
,
493-494
, pp.
849
854
.10.4028/www.scientific.net/KEM.493-494.849
18.
Ben
,
Y.
,
Zhang
,
L.
,
Wei
,
S.
,
Zhou
,
T.
,
Li
,
Z.
,
Yang
,
H.
,
Wang
,
Y.
,
Selim
,
F. A.
,
Wong
,
C.
, and
Chen
,
H.
,
2017
, “
PVB Modified Spherical Granules of β-TCP by Spray Drying for 3D Ceramic Printing
,”
J. Alloys Compd.
,
721
, pp.
312
319
.10.1016/j.jallcom.2017.06.022
19.
Seitz
,
H.
,
Deisinger
,
U.
,
Leukers
,
B.
,
Detsch
,
R.
, and
Ziegler
,
G.
,
2009
, “
Different Calcium Phosphate Granules for 3-D Printing of Bone Tissue Engineering Scaffolds
,”
Adv. Eng. Mater.
,
11
(
5
), pp.
B41
46
.10.1002/adem.200800334
20.
Cox
,
S. C.
,
Thornby
,
J. A.
,
Gibbons
,
G. J.
,
Williams
,
M. A.
, and
Mallick
,
K. K.
,
2015
, “
3D Printing of Porous Hydroxyapatite Scaffolds Intended for Use in Bone Tissue Engineering Applications
,”
Mater. Sci. Eng. C
,
47
, pp.
237
247
.10.1016/j.msec.2014.11.024
21.
Chumnanklang
,
R.
,
Panyathanmaporn
,
T.
,
Sitthiseripratip
,
K.
, and
Suwanprateeb
,
J.
,
2007
, “
3D Printing of Hydroxyapatite: Effect of Binder Concentration in Pre-Coated Particle on Part Strength
,”
Mater. Sci. Eng. C
,
27
(
4
), pp.
914
921
.10.1016/j.msec.2006.11.004
22.
Du
,
W.
,
Miao
,
G.
,
Liu
,
L.
,
Pei
,
Z.
, and
Ma
,
C.
,
2019
, “
Binder Jetting Additive Manufacturing of Ceramics: Feedstock Powder Preparation by Spray Freeze Granulation
,”
ASME
Paper No. MSEC2019-3001.10.1115/MSEC2019-3001
23.
Du
,
W.
,
Miao
,
G.
,
Liu
,
L.
,
Pei
,
Z.
, and
Ma
,
C.
,
2019
, “
Binder Jetting Additive Manufacturing of Ceramics: Comparison of Flowability and Sinterability Between Raw and Granulated Powders
,”
ASME
Paper No. MSEC2019-2983.10.1115/MSEC2019-2983
24.
ASTM International
,
2017
, “
Standard Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel
,”ASTM, West Conshohocken, PA, Standard No. B212-17.
25.
ASTM International
,
2013
, “
Standard Test Method for Apparent Density of Non-Free-Flowing Metal Powders Using the Carney Funnel
,”ASTM, West Conshohocken, PA, Standard No. B417 2013.
26.
ASTM International
,
2015
, “
Standard Test Method for Tap Density of Metal Powders and Compounds
,” ASTM, West Conshohocken, PA, Standard No. B527-15.
27.
ASTM International
,
2017
, “
Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter
,” ASTM, West Conshohocken, PA, Standard No. B213-17.
28.
ASTM International
,
2000
, “
Standard Test Method for Measuring the Angle of Repose of Free-Flowing Mold Powders
,” ASTM, West Conshohocken, PA, Standard No. C
1444
00
.
29.
Kang
,
S.-J. L.
,
2005
,
Sintering: Densification, Grain Growth, and Microstructure
,
Elsevier Butterworth-Heinemann
,
Burlington, MA
.
30.
Hwang
,
H. J.
,
Yasuoka
,
M.
,
Sando
,
M.
,
Toriyama
,
M.
, and
Niihara
,
K.
,
1999
, “
Fabrication, Sinterability, and Mechanical Properties of Lead Zirconate Titanate/Silver Composites
,”
J. Am. Ceram. Soc.
,
82
(
9
), pp.
2417
2422
.10.1111/j.1151-2916.1999.tb02099.x
31.
Lara
,
C.
,
Pascual
,
M. J.
, and
Durán
,
A.
,
2004
, “
Glass-Forming Ability, Sinterability and Thermal Properties in the Systems RO-BaO-SiO2 (R = Mg, Zn)
,”
J. Non-Cryst. Solids
,
348
(
15
), pp.
149
155
.10.1016/j.jnoncrysol.2004.08.140
32.
ISO
,
2013
, “
Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics) – Determination of Density and Apparent Porosity
,” ISO, Geneva, Switzerland, Standard No. ISO 18754:2013.
33.
Abdullah
,
E. C.
, and
Geldart
,
D.
,
1999
, “
The Use of Bulk Density Measurements as Flowability Indicators
,”
Powder Technol.
,
102
(
2
), pp.
151
165
.10.1016/S0032-5910(98)00208-3
34.
Oberacker
,
R.
,
2011
, “
Powder Compaction by Dry Pressing
,”
Ceramic Science and Technology, Volume 3: Synthesis and Processing
,
R.
Riedel
, and
I.-W.
Chen
, eds.,
Wiley-VCH
, Weinheim, Germany, pp.
10
14
.
35.
Adolfsson
,
E.
, and
Shen
,
Z.
,
2012
, “
Effects of Granule Density on Strength and Granule Related Defects in Zirconia
,”
J. Eur. Ceram. Soc.
,
32
(
11
), pp.
2653
2659
.10.1016/j.jeurceramsoc.2012.02.059
36.
Cheong
,
Y. S.
,
Mangwandi
,
C.
,
Fu
,
J.
,
Adams
,
M. J.
,
Hounslow
,
M. J.
, and
Salman
,
A. D.
,
2007
, “
A Mechanistic Description of Granule Deformation and Breakage
,”
Handbook Powder Technol.
,
12
, pp.
1055
1120
.10.1016/S0167-3785(07)12029-7
You do not currently have access to this content.