Abstract

This experimental work utilizes a newly developed method, curved water jet-guided laser micromachining, to generate microfeatures on metallic surfaces. During the process, material is removed by a high-power nanosecond laser beam, which is transmitted through a high-pressure microwater jet via total internal reflection. To achieve intricate texturing patterns, a secondary motion component is superimposed on the XY motion of the workpiece provided by the motion stage. The secondary motion is generated by deflecting the water jet trajectory by a controllable dielectrophoretic force. The induced secondary motion of the water jet cuts the processing time to one half when generating texture patterns for isotropic wetting as compared to processes with only XY motion. The ability to alter the water jet's trajectory by tens of microns at high frequencies, which is beyond the capability of conventional CNC machines, allows a wide range of different micropatterns to be generated, profoundly increasing the flexibility and efficiency of the process as compared to conventional approaches. As a demonstration, surface textures for isotropic and anisotropic behaviors are generated on stainless steel surfaces. The influence of feature spacing, motion speed (frequency), and texturing patterns on surface wettability is studied.

References

References
1.
Richerzhagen
,
B.
,
Kutsuna
,
M.
,
Okada
,
H.
, and
Ikeda
,
T.
,
2003
, “
Waterjet-Guided Laser Processing
,”
Proc. SPIE
4830
, pp.
91
94
.10.1117/12.486514
2.
Richerzhagen
,
B.
,
Housh
,
R.
,
Wagner
,
F.
, and
Manley
,
J.
,
2004
, “
Water Jet Guided Laser Cutting: A Powerful Hybrid Technology for Fine Cutting and Grooving
,”
Proceedings of Advanced Laser Applications Conference and Exposition
, Ann Arbor, MI, pp.
175
181
.
3.
Porter
,
J. A.
,
Louhisalmi
,
Y. A.
,
Karjalainen
,
J. A.
, and
Fuger
,
S.
,
2007
, “
Cutting Thin Sheet Metal With a Water Jet Guided Laser Using Various Cutting Distances, Feed Speeds and Angles of Incidence
,”
Int. J. Adv. Manuf. Technol.
,
33
(
9–10
), pp.
961
967
.10.1007/s00170-006-0521-7
4.
Hock
,
K.
,
Adelmann
,
B.
, and
Hellmann
,
R.
,
2012
, “
Comparative Study of Remote Fiber Laser and Water-Jet Guided Laser Cutting of Thin Metal Sheets
,”
Phys. Proc.
,
39
, pp.
225
231
.10.1016/j.phpro.2012.10.033
5.
Rashed
,
C. A. A.
,
Romoli
,
L.
,
Tantussi
,
F.
,
Fuso
,
F.
,
Burgener
,
M.
,
Cusanelli
,
G.
,
Allegrini
,
M.
, and
Dini
,
G.
,
2013
, “
Water Jet Guided Laser as an Alternative to EDM for Micro-Drilling of Fuel Injector Nozzles: A Comparison of Machined Surfaces
,”
J. Manuf. Processes
,
15
(
4
), pp.
524
532
.10.1016/j.jmapro.2013.08.002
6.
Sun
,
D.
,
Han
,
F.
, and
Ying
,
W.
,
2019
, “
The Experimental Investigation of Water Jet–Guided Laser Cutting of CFRP
,”
Int. J. Adv. Manuf. Technol.
,
102
(
1–4
), pp.
719
711
.10.1007/s00170-018-03218-4
7.
Sun
,
D.
,
Han
,
F.
,
Ying
,
W.
, and
Jin
,
C.
,
2018
, “
Surface Integrity of Water Jet Guided Laser Machining of CFRP
,”
Procedia CIRP
,
71
, pp.
71
74
.10.1016/j.procir.2018.05.073
8.
Nilsson
,
T.
,
Wagner
,
F.
,
Housh
,
R.
, and
Richerzhagen
,
B.
,
2004
, “
Scribing of GaN Wafer for White LED by Water Jet Guided Laser
,”
Proc. SPIE
5366
, pp.
200
206
.10.1117/12.529012
9.
Wagner
,
F.
,
Sibailly
,
O.
,
Vágó
,
N.
,
Romanowicz
,
R.
, and
Richerzhagen
,
B.
,
2003
, “
The Laser Microjet Technology—10 Years of Development
,” International Congress on Applications of Lasers & Electro-Optics, Laser Institute of America, Vol. 2003, No. 1, p. M401.
10.
Pohl
,
H. A.
, and
Pohl
,
H.
,
1978
,
Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields
,
Cambridge University Press
,
Cambridge, UK
.
11.
Taylor
,
G. W.
,
1972
, “
Liquid Optical Fibers
,”
Appl. Opt.
,
11
(
4
), pp.
786
790
.10.1364/AO.11.000786
12.
Hokmabad
,
B. V.
,
Faraji
,
S.
,
Dizajyekan
,
T. G.
,
Sadri
,
B.
, and
Esmaeilzadeh
,
E.
,
2014
, “
Electric Field-Assisted Manipulation of Liquid Jet and Emanated Droplets
,”
Int. J. Multiphase Flow
,
65
, pp.
127
137
.10.1016/j.ijmultiphaseflow.2014.03.009
13.
Chiarot
,
P. R.
, and
Jones
,
T. B.
,
2009
, “
Dielectrophoretic Deflection of Ink Jets
,”
J. Micromech. Microeng.
,
19
(
12
), p.
125018
.10.1088/0960-1317/19/12/125018
14.
Doak
,
W. J.
,
Donovan
,
J. P.
, and
Chiarot
,
P. R.
,
2013
, “
Deflection of Continuous Droplet Streams Using High-Voltage Dielectrophoresis
,”
Exp. Fluids
,
54
(
7
), p.
1577
.10.1007/s00348-013-1577-4
15.
Mohanty
,
S.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2016
, “
Manipulation of Water Jet Trajectory by a Nonuniform Electric Field in Water Jet Material Processing
,”
ASME J. Micro Nano-Manuf.
,
4
(
2
), p.
021003
.10.1115/1.4032904
16.
Shi
,
Y.
,
Cao
,
J.
, and
Ehmann
,
K. F.
,
2018
, “
Response of High-Pressure Micro Water Jets to Static and Dynamic Nonuniform Electric Fields
,”
ASME J. Micro Nano-Manuf.
,
6
(
2
), p.
021006
.10.1115/1.4039507
17.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Halperin
,
G.
,
1999
, “
Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces
,”
Tribol. Trans.
,
42
(
3
), pp.
511
516
.10.1080/10402009908982248
18.
Ryk
,
G.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2002
, “
Experimental Investigation of Laser Surface Texturing for Reciprocating Automotive Components
,”
Tribol. Trans.
,
45
(
4
), pp.
444
449
.10.1080/10402000208982572
19.
Ling
,
T. D.
,
Liu
,
P. Z.
,
Xiong
,
S. W.
,
Grzina
,
D.
,
Cao
,
J.
,
Wang
,
Q. J.
,
Xia
,
Z. C.
, and
Talwar
,
R.
,
2013
, “
Surface Texturing of Drill Bits for Adhesion Reduction and Tool Life Enhancement
,”
Tribol. Lett.
,
52
(
1
), pp.
113
122
.10.1007/s11249-013-0198-7
20.
Sun
,
K.
,
Yang
,
H.
,
Xue
,
W.
,
He
,
A.
,
Zhu
,
D. H.
,
Liu
,
W. W.
,
Adeyemi
,
K.
, and
Cao
,
Y.
,
2018
, “
Anti-Biofouling Superhydrophobic Surface Fabricated by Picosecond Laser Texturing of Stainless Steel
,”
Appl. Surf. Sci.
,
436
, pp.
263
267
.10.1016/j.apsusc.2017.12.012
21.
Rajab
,
F. H.
,
Liauw
,
C. M.
,
Benson
,
P. S.
,
Li
,
L.
, and
Whitehead
,
K. A.
,
2017
, “
Production of Hybrid Macro/Micro/Nano Surface Structures on Ti6Al4V Surfaces by Picosecond Laser Surface Texturing and Their Antifouling Characteristics
,”
Colloid Surf. B
,
160
, pp.
688
696
.10.1016/j.colsurfb.2017.10.008
22.
Guo
,
P.
,
Zheng
,
Y. M.
,
Wen
,
M. X.
,
Song
,
C.
,
Lin
,
Y. C.
, and
Jiang
,
L.
,
2012
, “
Icephobic/Anti-Icing Properties of Micro/Nanostructured Surfaces
,”
Adv. Mater.
,
24
(
19
), pp.
2642
2648
.10.1002/adma.201104412
23.
Callies
,
M.
,
Chen
,
Y.
,
Marty
,
F.
,
Pepin
,
A.
, and
Quere
,
D.
,
2005
, “
Microfabricated Textured Surfaces for Super-Hydrophobicity Investigations
,”
Microelectron. Eng.
,
78–79
, pp.
100
105
.10.1016/j.mee.2004.12.093
24.
Fadeeva
,
E.
, and
Chichkov
,
B.
,
2018
, “
Biomimetic Liquid-Repellent Surfaces by Ultrafast Laser Processing
,”
Appl. Sci.
,
8
(
9
), p.
1424
.10.3390/app8091424
25.
Dong
,
C. S.
,
Gu
,
Y.
,
Zhong
,
M. L.
,
Li
,
L.
,
Sezer
,
K.
,
Ma
,
M. X.
, and
Liu
,
W. J.
,
2011
, “
Fabrication of Superhydrophobic Cu Surfaces With Tunable Regular Micro and Random Nano-Scale Structures by Hybrid Laser Texture and Chemical Etching
,”
J. Mater. Process. Technol.
,
211
(
7
), pp.
1234
1240
.10.1016/j.jmatprotec.2011.02.007
26.
Ou
,
J. F.
,
Hu
,
W. H.
,
Liu
,
S.
,
Xue
,
M. S.
,
Wang
,
F. J.
, and
Li
,
W.
,
2013
, “
Superoleophobic Textured Copper Surfaces Fabricated by Chemical Etching/Oxidation and Surface Fluorination
,”
ACS Appl. Mater. Interfaces
,
5
(
20
), pp.
10035
10041
.10.1021/am402531m
27.
Shibuichi
,
S.
,
Yamamoto
,
T.
,
Onda
,
T.
, and
Tsujii
,
K.
,
1998
, “
Super Water- and Oil-Repellent Surfaces Resulting From Fractal Structure
,”
J. Colloid Interface Sci.
,
208
(
1
), pp.
287
294
.10.1006/jcis.1998.5813
28.
Guo
,
P.
,
Lu
,
Y.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2014
, “
Generation of Hierarchical Micro-Structures for Anisotropic Wetting by Elliptical Vibration Cutting
,”
CIRP Ann.-Manuf. Sci. Technol.
,
63
(
1
), pp.
553
556
.10.1016/j.cirp.2014.03.048
29.
Shi
,
Y.
,
Jiang
,
Z.
,
Cao
,
J.
, and
Ehmann
,
K. F.
,
2020
, “
Texturing of Metallic Surfaces for Superhydrophobicity by Water Jet Guided Laser Micro-Machining
,”
Appl. Surf. Sci.
,
500
, p.
144286
.10.1016/j.apsusc.2019.144286
30.
Etsion
,
I.
,
2005
, “
State of the Art in Laser Surface Texturing
,”
ASME J. Trib.
, 127(1), pp.
248
253
.10.1115/1.1828070
31.
Pohl
,
H. A.
, and
Crane
,
J. S.
,
1972
, “
Dielectrophoretic Force
,”
J. Theor. Biol.
,
37
(
1
), pp.
1
13
.10.1016/0022-5193(72)90112-9
32.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.10.1021/ie50320a024
33.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
550
.10.1039/tf9444000546
34.
Ta
,
V. D.
,
Dunn
,
A.
,
Wasley
,
T. J.
,
Li
,
J.
,
Kay
,
R. W.
,
Stringer
,
J.
,
Smith
,
P. J.
,
Esenturk
,
E.
,
Connaughton
,
C.
, and
Shephard
,
J. D.
,
2016
, “
Laser Textured Superhydrophobic Surfaces and Their Applications for Homogeneous Spot Deposition
,”
Appl. Surf. Sci.
,
365
, pp.
153
159
.10.1016/j.apsusc.2016.01.019
35.
Kietzig
,
A. M.
,
Hatzikiriakos
,
S. G.
, and
Englezos
,
P.
,
2009
, “
Patterned Superhydrophobic Metallic Surfaces
,”
Langmuir
,
25
(
8
), pp.
4821
4827
.10.1021/la8037582
You do not currently have access to this content.