Abstract

This work seeks to develop a fundamental understanding of slot-die coating as a nanoparticle bed deposition mechanism for a microscale selective laser sintering (μ-SLS) process. The specific requirements of the μ-SLS process to deposit uniform sub-5 μm metal nanoparticle films while enabling high throughput fabrication make the slot-die coating process a strong candidate for layer-by-layer deposition. The key challenges of a coating system are to enable uniform nanoparticle ink deposition in an intermittent layer-by-layer manner. Identifying the experimental parameters to achieve this using a slot-die coating process is difficult. Therefore, the main contribution of this study is to develop a framework to predict the wet film thickness and onset of coating defects by simulating the experimental conditions of the μ-SLS process. The single-layer deposition characteristics and the operational window for the slot-die coating setup have been investigated through experiments and two-dimensional computational fluid dynamics simulations. The effect of coating parameters such as inlet speed, coating speed, and coating gap on the wet film thickness has been analyzed. For inlet speeds higher than the coating speed, it was found that the meniscus was susceptible to high instabilities leading to coating defects. Additionally, the study outlines the conditions for which the stability of the menisci upstream and downstream of the slot-die coater can affect the uniformity and thickness range of the coating.

References

1.
ASTM International
,
2013
, “
Standard Terminology for Additive Manufacturing Technologies
,” Rapid Manufacturing Association, ASTM International, West Conshohocken, PA, Standard No. F2792-12a.
2.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
“Introduction and Basic Principles,”
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, New York, pp.
1
18
.
3.
Guo
,
N.
, and
Leu
,
M. C.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Front. Mech. Eng.
,
8
(
3
), pp.
215
243
.10.1007/s11465-013-0248-8
4.
Delgado Camacho
,
D.
,
Clayton
,
P.
,
O'Brien
,
W. J.
,
Seepersad
,
C.
,
Juenger
,
M.
,
Ferron
,
R.
, and
Salamone
,
S.
,
2018
, “
Applications of Additive Manufacturing in the Construction Industry—A Forward-Looking Review
,”
Autom. Constr.
,
89
, pp.
110
119
.10.1016/j.autcon.2017.12.031
5.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
, pp.
1
10
.10.5402/2012/208760
6.
Zadpoor
,
A. A.
, and
Malda
,
J.
,
2017
, “
Additive Manufacturing of Biomaterials, Tissues, and Organs
,”
Ann. Biomed. Eng.
,
45
(
1
), pp.
1
11
.10.1007/s10439-016-1719-y
7.
Roy
,
N. K.
,
Behera
,
D.
,
Dibua
,
O.
,
Foong
,
C.
, and
Cullinan
,
M. A.
,
2019
, “
A Novel Microscale Selective Laser Sintering (μ-SLS) Process for the Fabrication of Microelectronic Parts
,”
Nat. Microsyst. Nanoeng.
,
5
, p. 64.10.1038/s41378-019-0116-8
8.
Yuksel
,
A.
,
Yu
,
E. T.
,
Murthy
,
J.
, and
Cullinan
,
M.
,
2017
, “
Effect of Substrate and Nanoparticle Spacing on Plasmonic Enhancement in Three-Dimensional Nanoparticle Structures
,”
ASME J. Micro Nano-Manuf.
,
5
(
4
), p.
040903
.10.1115/1.4037770
9.
Yuksel
,
A.
, and
Cullinan
,
M.
,
2016
, “
Modeling of Nanoparticle Agglomeration and Powder Bed Formation in Microscale Selective Laser Sintering Systems
,”
Addit. Manuf.
,
12
, pp.
204
215
.10.1016/j.addma.2016.07.002
10.
Dibua
,
O. G.
,
Yuksel
,
A.
,
Roy
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2019
, “
Nanoparticle Sintering Model: Simulation and Calibration Against Experimental Data
,”
ASME J. Micro Nano-Manuf.
,
6
(
4
), p.
041004
.10.1115/1.4041668
11.
Lifton
,
V. A.
,
Lifton
,
G.
, and
Simon
,
S.
,
2014
, “
Options for Additive Rapid Prototyping Methods (3D Printing) in MEMS Technology
,”
Rapid Prototyp. J.
,
20
(
5
), pp.
403
412
.10.1108/RPJ-04-2013-0038
12.
Roy
,
N. K.
,
Behera
,
D.
,
Dibua
,
O. G.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2019
, “
Experimental Study of the Subsystems in a Microscale Additive Manufacturing Process
,”
JOM
,
71
(
3
), pp.
974
983
.10.1007/s11837-018-3223-3
13.
Roy
,
N. K.
,
Behera
,
D.
,
Dibua
,
O. G.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2018
, “
Single Shot, Large Area Metal Sintering With Micrometer Level Resolution
,”
Opt. Exp.
,
26
(
20
), p.
25534
.10.1364/OE.26.025534
14.
Olakanmi
,
E. O.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
Progress in Materials Science a Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
J. Prog. Mater. Sci.
,
74
, pp.
401
477
.10.1016/j.pmatsci.2015.03.002
15.
Bai
,
Y.
, and
Williams
,
C. B.
,
2015
, “
An Exploration of Binder Jetting of Copper
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
177
185
.10.1108/RPJ-12-2014-0180
16.
Keicher
,
D. M.
,
Smugeresky
,
J. E.
,
Romero
,
J. A.
, and
Michelle
,
L.
,
2020
, “
Using the Laser Engineered Net Shaping (LENS) Process to Produce Complex Components From a CAD Solid Model
,”
SPIE Paper No. 2993
.
17.
Kocjan
,
A.
,
Logar
,
M.
, and
Shen
,
Z.
,
2017
, “
The Agglomeration, Coalescence and Sliding of Nanoparticles, Leading to the Rapid Sintering of Zirconia Nanoceramics
,”
Scientific Reports
, 7, p.
2541
.10.1038/s41598-017-02760-7
18.
Roy
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2018
, “
Effect of Size, Morphology, and Synthesis Method on the Thermal and Sintering Properties of Copper Nanoparticles for Use in Microscale Additive Manufacturing Processes
,”
Addit. Manuf.
,
21
pp.
17
29
.10.1016/j.addma.2018.02.008
19.
Roy
,
N. K.
,
Dibua
,
O. G.
,
Jou
,
W.
,
He
,
F.
,
Jeong
,
J.
,
Wang
,
Y.
, and
Cullinan
,
M. A.
,
2017
, “
A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers
,”
ASME J. Micro Nano-Manuf.
,
6
(
1
), p.
010903
.
20.
Krebs
,
F. C.
,
2009
, “
Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques
,”
Sol. Energy Mater. Sol. Cells
,
93
(
4
), pp.
394
412
.10.1016/j.solmat.2008.10.004
21.
Park
,
N. G.
, and
Zhu
,
K.
,
2020
, “
Scalable Fabrication and Coating Methods for Perovskite Solar Cells and Solar Modules
,”
Nat. Rev. Mater.
,
5
(
5
), pp.
333
350
.10.1038/s41578-019-0176-2
22.
Hall
,
D.
,
Underhill
,
P.
, and
Torkelson
,
J.
,
1998
, “
Spin Coating of Thin and Ultrathin Polymer Films
,”
Polym. Eng. Sci.
,
38
(
12
), pp.
2039
2045
.10.1002/pen.10373
23.
Aegerter, M. A.
, and
Mennig
,
M.
, S. H.,
2004
, “
Doctor Blade
,” Sol-Gel Technologies for Glass Producers and Users, Springer Science+Business Media, Berlin, pp.
89
93
.
24.
Suikkola
,
J.
,
Björninen
,
T.
,
Mosallaei
,
M.
,
Kankkunen
,
T.
,
Iso-Ketola
,
P.
,
Ukkonen
,
L.
,
Vanhala
,
J.
, and
Mäntysalo
,
M.
,
2016
, “
Screen-Printing Fabrication and Characterization of Stretchable Electronics
,”
Scientific Reports.
,
6
, p.
25784
.10.1038/srep25784
25.
Choi
,
J.
,
Kim
,
Y.-J.
,
Lee
,
S.
,
Son
,
S. U.
,
Ko
,
H. S.
,
Nguyen
,
V. D.
, and
Byun
,
D.
,
2008
, “
Drop-on-Demand Printing of Conductive Ink by Electrostatic Field Induced Inkjet Head
,”
Appl. Phys. Lett.
,
93
(
19
), p.
193508
.10.1063/1.3020719
26.
Nayak
,
L.
,
Mohanty
,
S.
,
Nayak
,
S. K.
, and
Ramadoss
,
A.
,
2019
, “
A Review on Inkjet Printing of Nanoparticle Inks for Flexible Electronics
,”
J. Mater. Chem. C
,
7
(
29
), pp.
8771
8795
.10.1039/C9TC01630A
27.
Kapur
,
N.
,
Hewson
,
R.
,
Sleigh
,
P. A.
,
Summers
,
J. L.
,
H. M.
,
T.
, and
Abbott
,
J. S.
,
2011
, “
A Review of Gravure Coating Systems
,”
Convert. e-Print
,
1
(
4
), pp.
56
60
.https://www.researchgate.net/publication/277757025_A_Review_of_Gravure_Coating_Systems
28.
Bariya
,
M.
,
Shahpar
,
Z.
,
Park
,
H.
,
Sun
,
J.
,
Jung
,
Y.
,
Gao
,
W.
,
Nyein
,
H. Y. Y.
,
Liaw
,
T. S.
,
Tai
,
L. C.
,
Ngo
,
Q. P.
,
Chao
,
M.
,
Zhao
,
Y.
,
Hettick
,
M.
,
Cho
,
G.
, and
Javey
,
A.
,
2018
, “
Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medical Devices
,”
ACS Nano
,
12
(
7
), pp.
6978
6987
.10.1021/acsnano.8b02505
29.
Ding
,
X.
, and
Liu
,
J.
,
2016
, “
Review Article: Transport Phenomena and Fluid Mechanics a Review of the Operating Limits in Slot Die Coating Processes
,” AIChE J., 62(7), pp.
2508
2524
.
30.
Derjaguin
,
B.
, and
Landau
,
L.
,
1993
, “
Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes
,”
Prog. Surf. Sci.
,
43
(
1–4
), pp.
30
59
.10.1016/0079-6816(93)90013-L
31.
Maleki
,
M.
,
Reyssat
,
M.
,
Restagno
,
F.
,
Quéré
,
D.
, and
Clanet
,
C.
,
2011
, “
Landau-Levich Menisci
,”
J. Colloid Interface Sci.
,
354
(
1
), pp.
359
363
.10.1016/j.jcis.2010.07.069
32.
Carvalho
,
M. S.
, and
Kheshgi
,
H. S.
,
2000
, “
Low-Flow Limit in Slot Coating: Theory and Experiments
,”
AIChE J.
,
46
(
10
), pp.
1907
1917
.10.1002/aic.690461003
33.
Ruschak
,
K. J.
,
1976
, “
Limiting Flow in a Pre-Metered Coating Device
,” Chem. Eng. Sci., 31(11), pp.
1057
1060
.
34.
Higgins
,
B. G.
, and
Scriven
,
L. E.
,
1980
, “
Capillary Pressure and Viscous Pressure Drop Set Bounds on Coating Bead Operability
,”
Chem. Eng. Sci.
,
35
(
3
), pp.
673
682
.10.1016/0009-2509(80)80018-2
35.
Akbarzadeh
,
V.
, and
Hrymak
,
A. N.
,
2016
, “
Coupled Fluid-Particle Modeling of a Slot Die System
,”
AIChE J.
,
62
(
6
), pp.
1933
1939
.10.1002/aic.15187
36.
Lin
,
C.
,
Wang
,
B.
,
Tiu
,
C.
, and
Liu
,
T.
,
2012
, “
On the Pinning of Downstream Meniscus for Slot Die Coating
,”
Adv. Polym. Technol.
,
32
(
2013
), pp.
474
485
.10.1002/adv.21271
37.
Behera
,
D.
,
Roy
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2018
, “
Nanoparticle Bed Deposition by Slot Die Coating for Microscale Selective Laser Sintering Applications
,”
Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
, Austin, TX, pp.
2382
2393
.
38.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Mehod for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
39.
Bhamidipati
,
K. L.
,
Didari
,
S.
, and
Harris
,
T. A. L.
,
2013
, “
Slot Die Coating of Polybenzimiazole Based Membranes at the Air Engulfment Limit
,”
J. Power Sources
,
239
, pp.
382
392
.10.1016/j.jpowsour.2013.03.132
40.
Didari
,
S.
,
Ahmad
,
Z. Y.
,
Veldhorst
,
J. D.
, and
Harris
,
T. A. L.
,
2014
, “
Wetting Behavior of the Shear Thinning Power Law Fluids
,”
J. Coat. Technol. Res.
,
11
(
1
), pp.
95
102
.10.1007/s11998-013-9503-5
41.
Ansys
,
2017
, “
Ansys Fluent User's Guide, Release 18.1
,”
Ansys
,
Canonsburg, PA
.
42.
Ansys
,
2017
, “
Ansys Fluent Theory Guide, Release 18.1
,”
Ansys
,
Canonsburg, PA
.
You do not currently have access to this content.