Abstract

The growth of laser-induced nanocarbons, referred to here as laser-induced nanocarbon (LINC) for short, directly on polymeric surfaces is a promising route toward surface engineering of commercial polymers. This paper aims to demonstrate how this new approach can enable achieving varied surface properties based on tuning the nanostructured morphology of the formed graphitic material on commercial polyimide (Kapton) films. We elucidate the effects of tuning laser processing parameters on the achieved nanoscale morphology and the resulting surface hydrophobicity or hydrophilicity. Our results show that by varying lasing power, rastering speed, laser spot size, and line-to-line gap sizes, a wide range of water contact angles are possible, i.e., from below 20 deg to above 110 deg. Combining water contact angle measurements from an optical tensiometer with LINC surface characterization using optical microscopy, electron microscopy, and Raman spectroscopy enables building the process–structur–property relationship. Our findings reveal that both the value of contact angle and the anisotropic wetting behavior of LINC on polyimide are dependent on their hierarchical surface nanostructure which ranges from isotropic nanoporous morphology to fibrous morphology. Results also show that increasing gap sizes lead to an increase in contact angles and thus an increase in the hydrophobicity of the surface. Hence, our work highlight the potential of this approach for manufacturing flexible devices with tailored surfaces.

References

References
1.
Lin
,
J.
,
Peng
,
Z.
,
Liu
,
Y.
,
Ruiz-Zepeda
,
F.
,
Ye
,
R.
,
Samuel
,
E. L. G.
,
Yacaman
,
M. J.
,
Yakobson
,
B. I.
, and
Tour
,
J. M.
,
2014
, “
Laser-Induced Porous Graphene Films From Commercial Polymers
,”
Nat. Commun.
,
5
, pp.
1
8
.10.1038/ncomms6714
2.
Zhang
,
J.
,
Zhang
,
C.
,
Sha
,
J.
,
Fei
,
H.
,
Li
,
Y.
, and
Tour
,
J. M.
,
2017
, “
Efficient Water-Splitting Electrodes Based on Laser-Induced Graphene
,”
ACS Appl. Mater. Interfaces
,
9
(
32
), pp.
26840
26847
.10.1021/acsami.7b06727
3.
Ye
,
R.
,
Chyan
,
Y.
,
Zhang
,
J.
,
Li
,
Y.
,
Han
,
X.
,
Kittrell
,
C.
, and
Tour
,
J. M.
,
2017
, “
Laser-Induced Graphene Formation on Wood
,”
Adv. Mater.
,
29
(
37
), p.
1702211
.10.1002/adma.201702211
4.
Li
,
Y.
,
Luong
,
D. X.
,
Zhang
,
J.
,
Tarkunde
,
Y. R.
,
Kittrell
,
C.
,
Sargunaraj
,
F.
,
Ji
,
Y.
,
Arnusch
,
C. J.
, and
Tour
,
J. M.
,
2017
, “
Laser-Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces
,”
Adv. Mater.
,
29
(
27
), p.
1700496
.10.1002/adma.201700496
5.
Mamleyev
,
E. R.
,
Heissler
,
S.
,
Nefedov
,
A.
,
Weidler
,
P. G.
,
Nordin
,
N.
,
Kudryashov
,
V. V.
,
Länge
,
K.
,
MacKinnon
,
N.
, and
Sharma
,
S.
,
2019
, “
Laser-Induced Hierarchical Carbon Patterns on Polyimide Substrates for Flexible Urea Sensors
,”
NPJ Flex. Electron.
,
3
(
1
), p.
2
.10.1038/s41528-018-0047-8
6.
Luo
,
S.
,
Hoang
,
P. T.
, and
Liu
,
T.
,
2016
, “
Direct Laser Writing for Creating Porous Graphitic Structures and Their Use for Flexible and Highly Sensitive Sensor and Sensor Arrays
,”
Carbon N. Y.
,
96
, pp.
522
531
.10.1016/j.carbon.2015.09.076
7.
Duy
,
L. X.
,
Peng
,
Z.
,
Li
,
Y.
,
Zhang
,
J.
,
Ji
,
Y.
, and
Tour
,
J. M.
,
2018
, “
Laser-Induced Graphene Fibers
,”
Carbon N. Y.
,
126
(
7
), pp.
472
479
.10.1016/j.carbon.2017.10.036
8.
Singh
,
S. P.
,
Li
,
Y.
,
Zhang
,
J.
,
Tour
,
J. M.
, and
Arnusch
,
C. J.
,
2018
, “
Sulfur-Doped Laser-Induced Porous Graphene Derived From Polysulfone-Class Polymers and Membranes
,”
ACS Nano
,
12
(
1
), pp.
289
297
.10.1021/acsnano.7b06263
9.
Luong
,
D. X.
,
Yang
,
K.
,
Yoon
,
J.
,
Singh
,
S. P.
,
Wang
,
T.
,
Arnusch
,
C. J.
, and
Tour
,
J. M.
,
2019
, “
Laser-Induced Graphene Composites as Multifunctional Surfaces
,”
ACS Nano
,
13
, pp.
2579
2586
.10.1021/acsnano.8b09626
10.
Singh
,
S. P.
,
Li
,
Y.
,
Be'er
,
A.
,
Oren
,
Y.
,
Tour
,
J. M.
, and
Arnusch
,
C. J.
,
2017
, “
Laser-Induced Graphene Layers and Electrodes Prevents Microbial Fouling and Exerts Antimicrobial Action
,”
ACS Appl. Mater. Interfaces
,
9
(
21
), pp.
18238
18247
.10.1021/acsami.7b04863
11.
Lamberti
,
A.
,
Perrucci
,
F.
,
Caprioli
,
M.
,
Serrapede
,
M.
,
Fontana
,
M.
,
Bianco
,
S.
,
Ferrero
,
S.
, and
Tresso
,
E.
,
2017
, “
New Insights on Laser-Induced Graphene Electrodes for Flexible Supercapacitors: Tunable Morphology and Physical Properties
,”
Nanotechnology
,
28
(
17
), p.
174002
.10.1088/1361-6528/aa6615
12.
Vasile
,
E.
,
Iordache
,
S. M.
,
Ceaus
,
C.
,
Stamatin
,
I.
, and
Tiliakos
,
A.
,
2016
, “
Morphic Transitions of Nanocarbons Via Laser Pyrolysis of Polyimide Films
,”
J. Anal. Appl. Pyrolysis
,
121
, pp.
275
286
.10.1016/j.jaap.2016.08.007
13.
Magnes
,
J.
,
Odera
,
D.
,
Hartke
,
J.
,
Fountain
,
M.
,
Florence
,
L.
, and
Davis
,
V.
,
2006
, “
Quantitative and Qualitative Study of Gaussian Beam Visualization Techniques
,” preprint
arXiv:physics/0605102
.https://arxiv.org/abs/physics/0605102
14.
Xia
,
D.
,
Johnson
,
L. M.
, and
Lõpez
,
G. P.
,
2012
, “
Anisotropic Wetting Surfaces With One-Dimesional and Directional Structures: Fabrication Approaches, Wetting Properties and Potential Applications
,”
Adv. Mater.
,
24
(
10
), pp.
1287
1302
.10.1002/adma.201104618
15.
Sommers
,
A. D.
, and
Jacobi
,
A. M.
,
2006
, “
Creating Micro-Scale Surface Topology to Achieve Anisotropic Wettability on an Aluminum Surface
,”
J. Micromech. Microeng.
,
16
(
8
), pp.
1571
1578
.10.1088/0960-1317/16/8/018
16.
Liu
,
L.
,
Jacobi
,
A. M.
, and
Chvedov
,
D.
,
2009
, “
A Surface Embossing Technique to Create Micro-Grooves on an Aluminum Fin Stock for Drainage Enhancement
,”
J. Micromech. Microeng.
,
19
(
3
), p.
035026
.10.1088/0960-1317/19/3/035026
17.
Wang
,
T.
,
Li
,
X.
,
Zhang
,
J.
,
Wang
,
X.
,
Zhang
,
X.
,
Zhang
,
X.
,
Zhu
,
D.
,
Hao
,
Y.
,
Ren
,
Z.
, and
Yang
,
B.
,
2010
, “
Elliptical Silicon Arrays With Anisotropic Optical and Wetting Properties
,”
Langmuir
,
26
(
16
), pp.
13715
13721
.10.1021/la1017505
18.
Bliznyuk
,
O.
,
Vereshchagina
,
E.
,
Kooij
,
E. S.
, and
Poelsema
,
B.
,
2009
, “
Scaling of Anisotropic Droplet Shapes on Chemically Stripe-Patterned Surfaces
,”
Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys.
,
79
(
4
), pp.
1
6
.10.1103/PhysRevE.79.041601
You do not currently have access to this content.