Abstract

Graphene has attracted enormous research interest due to its extraordinary material properties. Process control to achieve high-quality graphene is indispensable for graphene-based applications. This research investigates the effects of process parameters on graphene quality in a low-pressure chemical vapor deposition (LPCVD) graphene growth process. A fractional factorial design of experiment is conducted to provide understanding on not only the main effect of process parameters, but also the interaction effect among them. Graphene quality including the number of layers and grain size is analyzed. To achieve monolayer graphene with large grain size, a condition with low CH4–H2 ratio, short growth time, high growth pressure, high growth temperature, and slow cooling rate is recommended. This study considers a large set of process parameters with their interaction effects and provides guidelines to optimize graphene growth via LPCVD focusing on the number of graphene layers and the grain size.

References

References
1.
Li
,
M.
,
Liu
,
D.
,
Wei
,
D.
,
Song
,
X.
,
Wei
,
D.
, and
Wee
,
A. T. S.
,
2016
, “
Controllable Synthesis of Graphene by Plasma‐Enhanced Chemical Vapor Deposition and Its Related Applications
,”
Adv. Sci.
,
3
(
11
), p.
1600003
.10.1002/advs.201600003
2.
Li
,
X.
,
Cai
,
W.
,
An
,
J.
,
Kim
,
S.
,
Nah
,
J.
,
Yang
,
D.
,
Piner
,
R.
,
Velamakanni
,
A.
,
Jung
,
I.
,
Tutuc
,
E.
,
Banerjee
,
S. K.
,
Colombo
,
L.
, and
Ruoff
,
R. S.
,
2009
, “
Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils
,”
Science
,
324
(
5932
), pp.
1312
1314
.10.1126/science.1171245
3.
Kim
,
K. S.
,
Zhao
,
Y.
,
Jang
,
H.
,
Lee
,
S. Y.
,
Kim
,
J. M.
,
Kim
,
K. S.
,
Ahn
,
J.-H.
,
Kim
,
P.
,
Choi
,
J.-Y.
, and
Hong
,
B. H.
,
2009
, “
Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes
,”
Nature
,
457
(
7230
), pp.
706
710
.10.1038/nature07719
4.
Kwon
,
S.-Y.
,
Ciobanu
,
C. V.
,
Petrova
,
V.
,
Shenoy
,
V. B.
,
Bareño
,
J.
,
Gambin
,
V.
,
Petrov
,
I.
, and
Kodambaka
,
S.
,
2009
, “
Growth of Semiconducting Graphene on Palladium
,”
Nano Lett.
,
9
(
12
), pp.
3985
3990
.10.1021/nl902140j
5.
Sutter
,
P. W.
,
Flege
,
J.-I.
, and
Sutter
,
E. A.
,
2008
, “
Epitaxial Graphene on Ruthenium
,”
Nat. Mater.
,
7
(
5
), pp.
406
411
.10.1038/nmat2166
6.
N'Diaye
,
A. T.
,
Coraux
,
J.
,
Plasa
,
T. N.
,
Busse
,
C.
, and
Michely
,
T.
,
2008
, “
Structure of Epitaxial Graphene on Ir (111)
,”
New J. Phys.
,
10
(
4
), p.
043033
.10.1088/1367-2630/10/4/043033
7.
Wang
,
C.
,
Vinodgopal
,
K.
, and
Dai
,
G.-P.
,
2018
, “
Large-Area Synthesis and Growth Mechanism of Graphene by Chemical Vapor Deposition
,”
Chemical Vapor Deposition for Nanotechnology
,
IntechOpen Limited
,
London, UK
, p.
18
.
8.
Li
,
X.
,
Cai
,
W.
,
Colombo
,
L.
, and
Ruoff
,
R. S.
,
2009
, “
Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling
,”
Nano Lett
,
9
(
12
), pp.
4268
4272
.10.1021/nl902515k
9.
Zhang
,
Y.
,
Gomez
,
L.
,
Ishikawa
,
F. N.
,
Madaria
,
A.
,
Ryu
,
K.
,
Wang
,
C.
,
Badmaev
,
A.
, and
Zhou
,
C.
,
2010
, “
Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition
,”
J. Phys. Chem. Lett.
,
1
(
20
), pp.
3101
3107
.10.1021/jz1011466
10.
Zhang
,
Y.
,
Zhang
,
L.
,
Kim
,
P.
,
Ge
,
M.
,
Li
,
Z.
, and
Zhou
,
C.
,
2012
, “
Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties
,”
Nano Lett.
,
12
(
6
), pp.
2810
2816
.10.1021/nl300039a
11.
Regmi
,
M.
,
Chisholm
,
M. F.
, and
Eres
,
G.
,
2012
, “
The Effect of Growth Parameters on the Intrinsic Properties of Large-Area Single Layer Graphene Grown by Chemical Vapor Deposition on Cu
,”
Carbon
,
50
(
1
), pp.
134
141
.10.1016/j.carbon.2011.07.063
12.
Vlassiouk
,
I.
,
Smirnov
,
S.
,
Regmi
,
M.
,
Surwade
,
S. P.
,
Srivastava
,
N.
,
Feenstra
,
R.
,
Eres
,
G.
,
Parish
,
C.
,
Lavrik
,
N.
,
Datskos
,
P.
,
Dai
,
S.
, and
Fulvio
,
P.
,
2013
, “
Graphene Nucleation Density on Copper: Fundamental Role of Background Pressure
,”
J. Phys. Chem. C
,
117
(
37
), pp.
18919
18926
.10.1021/jp4047648
13.
Choi
,
D. S.
,
Kim
,
K. S.
,
Kim
,
H.
,
Kim
,
Y.
,
Kim
,
T.
,
Rhy
,
S-h.
,
Yang
,
C.-M.
,
Yoon
,
D. H.
, and
Yang
,
W. S.
,
2014
, “
Effect of Cooling Condition on Chemical Vapor Deposition Synthesis of Graphene on Copper Catalyst
,”
ACS Appl. Mater. Interfaces
,
6
(
22
), pp.
19574
19578
.10.1021/am503698h
14.
Wirtz
,
C.
,
Lee
,
K.
,
Hallam
,
T.
, and
Duesberg
,
G. S.
,
2014
, “
Growth Optimisation of High Quality Graphene From Ethene at Low Temperatures
,”
Chem. Phys. Lett.
,
595–596
, pp.
192
196
.10.1016/j.cplett.2014.02.003
15.
Narula
,
U.
, and
Tan
,
C. M.
,
2016
, “
Determining the Parameters of Importance of a Graphene Synthesis Process Using Design-of-Experiments Method
,”
Appl. Sci.
,
6
(
7
), p.
204
.10.3390/app6070204
16.
Shanmugam
,
R.
,
Rangarajan
,
M.
,
Devanathan
,
S.
,
Sathe
,
V. G.
,
Senthilkumar
,
R.
, and
Kothurkar
,
N. K.
,
2016
, “
A Design of Experiments Investigation of the Effects of Synthesis Conditions on the Quality of CVD Graphene
,”
Mater. Res. Exp.
,
3
(
12
), p.
125601
.10.1088/2053-1591/3/12/125601
17.
Ferrari
,
A. C.
,
2007
, “
Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects
,”
Solid State Commun.
,
143
(
1–2
), pp.
47
57
.10.1016/j.ssc.2007.03.052
18.
Ferrari
,
A. C.
, and
Basko
,
D. M.
,
2013
, “
Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene
,”
Nat. Nanotechnol.
,
8
(
4
), pp.
235
246
.10.1038/nnano.2013.46
19.
Ferrari
,
A. C.
,
Meyer
,
J. C.
,
Scardaci
,
V.
,
Casiraghi
,
C.
,
Lazzeri
,
M.
,
Mauri
,
F.
,
Piscanec
,
S.
,
Jiang
,
D.
,
Novoselov
,
K. S.
,
Roth
,
S.
, and
Geim
,
A. K.
,
2006
, “
Raman Spectrum of Graphene and Graphene Layers
,”
Phys. Rev. Lett.
,
97
(
18
), p.
187401
.10.1103/PhysRevLett.97.187401
20.
Larsen
,
M. B. B. S.
,
2015
, “
Chemical Vapour Deposition of Large Area Graphene
,” Ph.D. thesis, Technical University of Denmark, Lyngby, Denmark.
21.
Cho
,
J. H.
,
Gorman
,
J. J.
,
Na
,
S. R.
, and
Cullinan
,
M.
,
2017
, “
Growth of Monolayer Graphene on Nanoscale Copper-Nickel Alloy Thin Films
,”
Carbon
,
115
, pp.
441
448
.10.1016/j.carbon.2017.01.023
22.
Lee
,
B.
, and
Li
,
W.
,
2020
, “
Performance of Different Layers of Graphene as Protective Coating for Copper Wire
,”
Mater. Lett.
,
273
, p.
127875
.10.1016/j.matlet.2020.127875
23.
Bhaviripudi
,
S.
,
Jia
,
X.
,
Dresselhaus
,
M. S.
, and
Kong
,
J.
,
2010
, “
Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst
,”
Nano Lett.
,
10
(
10
), pp.
4128
4133
.10.1021/nl102355e
24.
Cho
,
J. H.
,
Na
,
S. R.
,
Park
,
S.
,
Akinwande
,
D.
,
Liechti
,
K. M.
, and
Cullinan
,
M. A.
,
2019
, “
Controlling the Number of Layers in Graphene Using the Growth Pressure
,”
Nanotechnology
,
30
(
23
), p.
235602
.10.1088/1361-6528/ab0847
You do not currently have access to this content.