Abstract

Micromilling process is widely used to create complex 3D miniature products due to its flexibility and its ability to process difficult-to-cut material like Titanium alloys. High rotational speeds are used to overcome the limited flexural stiffness of the tool but the cutting zone temperatures rise due to the high rotational speeds. In addition to this, friction between the tool workpiece and tool chip also plays a major role in the temperature rise. The friction and temperature affect the cutting forces, tool life and stability of the process. To reduce the friction and heat generation, nanostructured solid lubricant coatings can be used. This study is focused on characterizing the effect of amorphous carbon (WC/a-C) coating on the micromachining response during high-speed micromilling of Ti–6Al–4V. A decrease in cutting forces for coated tools is observed for lower feed. A comprehensive tool coating damage assessment has been done in terms of debonding area on flank and rake faces. An increase in debonding area has been observed with lengths of cut but at a feed/flute of 4 μm, tool breakage occurs after a machining length of 60 mm.

References

References
1.
Sun
,
S.
,
Brandt
,
M.
, and
Dargusch
,
M. S.
,
2010
, “
Thermally Enhanced Machining of Hard-to-Machine Materials—A Review
,”
Int. J. Mach. Tool. Manuf.
,
50
(
8
), pp.
663
680
.10.1016/j.ijmachtools.2010.04.008
2.
Dandekar
,
C. R.
,
Shin
,
Y. C.
, and
Barnes
,
J.
,
2010
, “
Machinability Improvement of Titanium Alloy (Ti–6Al–4V) Via LAM and Hybrid Machining
,”
Int. J. Mach. Tool. Manuf.
,
50
(
2
), pp.
174
182
.10.1016/j.ijmachtools.2009.10.013
3.
Schueler
,
G. M.
,
Engmann
,
J.
,
Marx
,
T.
,
Haberland
,
R.
, and
Aurich
,
J. C.
,
2010
, “
Burr Formation and Surface Characteristics in Micro-End Milling of Titanium Alloys
,”
Burrs-Analysis, Control and Removal
,
Springer
,
Berlin, pp.
129
138
.
4.
Jun
,
M. B.
,
Joshi
,
S. S.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
An Experimental Evaluation of an Atomization-Based Cutting Fluid Application System for Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031118
.10.1115/1.2738961
5.
Vazquez
,
E.
,
Gomar
,
J.
,
Ciurana
,
J.
, and
Rodríguez
,
C. A.
,
2015
, “
Analyzing Effects of Cooling and Lubrication Conditions in Micromilling of Ti6Al4V
,”
J. Cleaner Prod.
,
87
, pp.
906
913
.10.1016/j.jclepro.2014.10.016
6.
Yamazaki
,
T.
,
Miki
,
K.
,
Sato
,
U.
, and
Sato
,
M.
,
2003
, “
Cooling Air Cutting of Ti-6Al-4V Alloy
,”
J. Jpn. Inst. Light Met.
,
53
(
10
), pp.
416
420
.10.2464/jilm.53.416
7.
Takacs
,
M.
,
Verö
,
B.
, and
Meszaros
,
I.
,
2003
, “
Micromilling of Metallic Materials
,”
J. Mater. Process. Technol.
,
138
(
1–3
), pp.
152
155
.10.1016/S0924-0136(03)00064-5
8.
Martin
,
J. M.
,
Donnet
,
C.
,
Le Mogne
,
T.
, and
Epicier
,
T.
,
1993
, “
Superlubricity of Molybdenum Disulphide
,”
Phys. Rev. B
,
48
(
14
), pp.
10583
10586
.10.1103/PhysRevB.48.10583
9.
Wänstrand
,
O.
,
Larsson
,
M.
, and
Hedenqvist
,
P.
,
1999
, “
Mechanical and Tribological Evaluation of PVD WC/C Coatings
,”
Surf. Coat. Technol.
,
111
(
2–3
), pp.
247
254
.10.1016/S0257-8972(98)00821-4
10.
Mittal
,
R. K.
,
Singh
,
R. K.
,
Kulkarni
,
S. S.
,
Kumar
,
P.
, and
Barshilia
,
H. C.
,
2018
, “
Characterization of Anti-Abrasion and Anti-Friction Coatings on Micromachining Response in High Speed Micromilling of Ti-6Al-4V
,”
J. Manuf. Process.
,
34
, pp.
303
312
.10.1016/j.jmapro.2018.06.021
11.
Aslantas
,
K.
, and
Tasgetiren
,
S.
,
2002
, “
Debonding Between Coating and Substrate Due to Rolling–Sliding Contact
,”
Mater. Des.
,
23
(
6
), pp.
571
576
.10.1016/S0261-3069(02)00020-1
12.
Fukui
,
H.
,
Okida
,
J.
,
Omori
,
N.
,
Moriguchi
,
H.
, and
Tsuda
,
K.
,
2004
, “
Cutting Performance of DLC Coated Tools in Dry Machining Aluminum Alloys
,”
Surf. Coat. Technol.
,
187
(
1
), pp.
70
76
.10.1016/j.surfcoat.2004.01.014
13.
Wu
,
T.
, and
Cheng
,
K.
,
2013
, “
Micro Milling Performance Assessment of Diamond-Like Carbon Coatings on a Micro-End Mill
,”
Proc. Inst. Mech. Eng. Part J.
,
227
(
9
), pp.
1038
1046
.10.1177/1350650112474123
14.
Barshilia
,
H. C.
,
Yogesh
,
K.
, and
Rajam
,
K. S.
,
2008
, “
Deposition of TiAlN Coatings Using Reactive Bipolar-Pulsed Direct Current Unbalanced Magnetron Sputtering
,”
Vaccum
,
83
(
2
), pp.
427
434
.10.1016/j.vacuum.2008.04.075
15.
Barshilia
,
H. C.
,
Ghosh
,
M.
,
Ramakrishna
,
R.
, and
Rajam
,
K. S.
,
2010
, “
Deposition and Characterization of TiAlSiN Nanocomposite Coatings Prepared by Reactive Pulsed Direct Current Unbalanced Magnetron Sputtering
,”
Appl. Surf. Sci.
,
256
(
21
), pp.
6420
6426
.10.1016/j.apsusc.2010.04.028
You do not currently have access to this content.