Abstract

Dielectrophoresis (DEP) is a force applied to microparticles in nonuniform electric field. This study discusses the fabrication of the glassy carbon interdigitated microelectrode arrays using lithography process based on lithographic patterning and subsequent pyrolysis of negative SU-8 photoresist. Resulting high-resistance electrodes would have the regions of high electric field at the ends of microarray as demonstrated by simulation. The study demonstrates that combining the alternating current (AC) applied bias with the direct current (DC) offset allows the user to separate subpopulations of microparticulates and control the propulsion of microparticles to the high field areas such as the ends of the electrode array. The direction of the movement of the particles can be switched by changing the offset. The demonstrated novel integrated DEP separation and propulsion can be applied to various fields including in vitro diagnostics as well as to microassembly technologies.

References

References
1.
Cecil
,
J.
,
Kumar
,
M. B. R.
,
Lu
,
Y.
, and
Basallali
,
V.
,
2016
, “
A Review of Micro-Devices Assembly Techniques and Technology
,”
Int. J. Adv. Manuf. Technol.
,
83
(
9–12
), pp.
1569
1581
.10.1007/s00170-015-7698-6
2.
Van Brussel
,
H.
,
Peirs
,
J.
,
Reynaerts
,
D.
,
Delchambre
,
A.
,
Reinhart
,
G.
,
Roth
,
N.
,
Weck
,
M.
, and
Zussman
,
E.
,
2000
, “
Assembly of Microsystems
,”
CIRP Ann. Manuf. Technol.
,
49
(
2
), pp.
451
472
.10.1016/S0007-8506(07)63450-7
3.
Lewpiriyawong
,
N.
,
Yang
,
C.
, and
Lam
,
Y. C.
,
2012
, “
Electrokinetically Driven Concentration of Particles and Cells by Dielectrophoresis With DC-Offset AC Electric Field
,”
Microfluid. Nanofluid.
,
12
(
5
), pp.
723
733
.10.1007/s10404-011-0919-x
4.
Ramos
,
A.
,
Morgan
,
H.
,
Green
,
N. G.
, and
Castellanos
,
A.
,
1998
, “
AC Electrokinetics: A Review of Forces in Microelectrode Structures
,”
J. Phys. D: Appl. Phys.
,
31
(
18
), pp.
2338
2353
.10.1088/0022-3727/31/18/021
5.
Hossan
,
M. R.
,
Dutta
,
D.
,
Islam
,
N.
, and
Dutta
,
P.
,
2018
, “
Electric Field Driven Pumping in Microfluidic Device
,”
Electrophoresis
,
39
(
5–6
), pp.
702
731
.10.1002/elps.201700375
6.
Cheng
,
C. I.
,
Cortez
,
J.
,
Dorantes
,
I. B. C.
,
Rodriguez
,
E. A.
, Jr.
,
Zad
, S. H.
, and
Kulinsky
,
L.
,
2018
, “
The Study of Particle-Particle Interaction and Assembly Under the Influence of Dielectrophoretic Force Experienced Between Carbon Microelectrodes
,”
Proceedings of the World Congress of Micro- and NanoManufacturing
, Portoroz, Slovenia, Portoroz, Slovenia, Sept. 18–20, Paper No.
WCMNM-2018-51
.https://www.researchgate.net/publication/328099540_The_Study_of_Particle-Particle_Interaction_and_Assembly_under_the_Influence_of_Dielectrophoretic_Force_Experienced_between_Carbon_Microelectrodes
7.
Demierre
,
N.
,
Braschler
,
T.
,
Linderholm
,
P.
,
Seger
,
U.
,
Van Lintel
,
H.
, and
Renaud
,
P.
,
2007
, “
Characterization and Optimization of Liquid Electrodes for Lateral Dielectrophoresis
,”
Lab Chip
,
7
(
3
), pp.
355
365
.10.1039/B612866A
8.
Olthuis
,
W.
,
Streekstra
,
W.
, and
Bergveld
,
P.
,
1995
, “
Theoretical and Experimental Determination of Cell Constants of Planar-Interdigitated Electrolyte Conductivity Sensors
,”
Sens. Actuators, B
,
24
(
1–3
), pp.
252
256
.10.1016/0925-4005(95)85053-8
9.
Zellner
,
P.
,
Shake
,
T.
,
Hosseini
,
Y.
,
Nakidde
,
D.
,
Riquelme
,
M. V.
,
Sahari
,
A.
,
Pruden
,
A.
,
Behkam
,
B.
, and
Agah
,
M.
,
2015
, “
3D Insulator-Based Dielectrophoresis Using DC-Biased, AC Electric Fields for Selective Bacterial Trapping
,”
Electrophoresis
,
36
(
2
), pp.
277
283
.10.1002/elps.201400236
You do not currently have access to this content.