Abstract

Microdrilling based on laser ablation has been widely applied for manufacturing micro-/nanofeatures on different materials as a noncontact thermal removal approach. It has the advantages of high aspect ratio manufacturing capability and reduced surface damage. However, laser ablation is a complicated process that is challenging to model. In this paper, a standardized modeling procedure was demonstrated to predict the area and depth of laser ablation based on experimental study and simulation validation. A case study was conducted where microdrilling of high-density polyethylene (HDPE) was investigated using a 1064 nm nanosecond pulsed laser. Blind microholes were fabricated on the HDPE samples by ablating under different laser powers and numbers of pulses. Gain factors were defined and determined by the experimental data. A quantitative area-depth approximation model was formulated based on the gain factors. A comparison of the measured and the simulated results of microholes presented average 96.5% accuracy for the area and 85.7% for the depth. This research provided a simple but effective approach to predict dimensions of microholes on various substrates using laser ablation under different laser powers and the numbers of pulses, which could pave the way for development and modeling of laser ablation on polymers.

References

References
1.
Liu
,
K.
,
Kim
,
Y.
, and
Noh
,
H. M.
,
2014
, “
ArF Excimer Laser Micromachining of MEMS Materials: Characterization and Applications
,”
ASME J. Micro- Nano-Manuf.
,
2
(
2
), p.
021006
.10.1115/1.4027121
2.
Roeder
,
M.
,
Schilling
,
P.
,
Fritz
,
K. P.
,
Guenther
,
T.
, and
Zimmermann
,
A.
,
2019
, “
Challenges in the Fabrication of Microstructured Polymer Optics
,”
ASME J. Micro- Nano-Manuf.
,
7
(
2
), p.
021001
.10.1115/1.4044219
3.
Dyer
,
P. E.
, and
Sidhu
,
J.
,
1985
, “
Excimer Laser Ablation and Thermal Coupling Efficiency to Polymer Films
,”
J. Appl. Phys.
,
57
(
4
), pp.
1420
1422
.10.1063/1.334503
4.
Nasrollahi
,
V.
,
Penchev
,
P.
,
Dimov
,
S.
,
Korner
,
L.
,
Leach
,
R.
, and
Kim
,
K.
,
2017
, “
Two-Side Laser Processing Method for Producing High Aspect Ratio Microholes
,”
ASME J. Micro- Nano-Manuf.
,
5
(
4
), p.
041006
.10.1115/1.4037645
5.
LaHaye
,
N. L.
,
Harilal
,
S. S.
,
Diwakar
,
P. K.
,
Hassanein
,
A.
, and
Kulkarni
,
P.
,
2013
, “
The Effect of Ultrafast Laser Wavelength on Ablation Properties and Implications on Sample Introduction in Inductively Coupled Plasma Mass Spectrometry
,”
J. Appl. Phys.
,
114
(
2
), p.
023103
.10.1063/1.4812491
6.
Aguiar
,
R.
,
Trtik
,
V.
,
Sánchez
,
F.
,
Ferrater
,
C.
, and
Varela
,
M.
,
1997
, “
Effects of Wavelength, Deposition Rate and Thickness on Laser Ablation Deposited YSZ Films on Si(100)
,”
Thin Solid Films
,
304
(
1–2
), pp.
225
228
.10.1016/S0040-6090(97)00201-0
7.
Burns
,
F. C.
, and
Cain
,
S. R.
,
1996
, “
The Effect of Pulse Repetition Rate on Laser Ablation of Polyimide and Polymethylmethacrylate-Based Polymers
,”
J. Phys. D: Appl. Phys.
,
29
(
5
), pp.
1349
1355
.10.1088/0022-3727/29/5/034
8.
Chichkov
,
B. N.
,
Momma
,
C.
,
Nolte
,
S.
,
Alvensleben
,
F.
, and
Tünnermann
,
A.
,
1996
, “
Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids
,”
Appl. Phys. A: Mater. Sci. Process.
,
63
(
2
), pp.
109
115
.10.1007/BF01567637
9.
Johnson
,
S. L.
,
Schriver
,
K. E.
,
Haglund
,
R. F.
, and
Bubb
,
D. M.
,
2009
, “
Effects of the Absorption Coefficient on Resonant Infrared Laser Ablation of Poly(Ethylene Glycol)
,”
J. Appl. Phys.
,
105
(
2
), p.
024901
.10.1063/1.3043883
10.
Pham
,
D.
,
Tonge
,
L.
,
Cao
,
J.
,
Wright
,
J.
,
Papiernik
,
M.
,
Harvey
,
E.
, and
Nicolau
,
D.
,
2002
, “
Effects of Polymer Properties on Laser Ablation Behaviour
,”
Smart Mater. Struct.
,
11
(
5
), p.
668
.10.1088/0964-1726/11/5/307
11.
Benavides
,
O.
,
De La Cruz May
,
L.
,
Flores Gil
,
A.
, and
Lugo Jimenez
,
J. A.
,
2015
, “
Experimental Study on Reflection of High-Intensity Nanosecond Nd:YAG Laser Pulses in Ablation of Metals
,”
Opt. Lasers Eng.
,
68
, pp.
83
86
.10.1016/j.optlaseng.2014.12.015
12.
Benavides
,
O.
,
Golikov
,
V.
, and
Lebedeva
,
O.
,
2013
, “
Reflection of High-Intensity Nanosecond Nd:YAG Laser Pulses by Metals
,”
Appl. Phys. A: Mater. Sci. Process.
,
112
(
1
), pp.
113
117
.10.1007/s00339-012-7209-7
13.
Tawfik
,
W.
,
Farooq
,
W. A.
, and
Alahmed
,
Z. A.
,
2014
, “
Damage Profile of HDPE Polymer Using Laser-Induced Plasma
,”
J. Opt. Soc. Korea
,
18
(
1
), pp.
50
54
.10.3807/JOSK.2014.18.1.050
14.
Torrisi
,
L.
,
Gammino
,
S.
,
Mezzasalma
,
A. M.
,
Visco
,
A. M.
,
Badziak
,
J.
,
Parys
,
P.
,
Wolowski
,
J.
,
Woryna
,
E.
,
Krása
,
J.
,
Láska
,
L.
,
Pfeifer
,
M.
,
Rohlena
,
K.
, and
Boody
,
F. P.
,
2004
, “
Laser Ablation of UHMWPE-Polyethylene by 438 nm High Energy Pulsed Laser
,”
Appl. Surf. Sci.
,
227
(
1–4
), pp.
164
174
.10.1016/j.apsusc.2003.11.078
15.
Bityurin
,
N.
,
Luk'Yanchuk
,
B. S.
,
Hong
,
M. H.
, and
Chong
,
T. C.
,
2003
, “
Models for Laser Ablation of Polymers
,”
ChemInform
,
103
(
2
), pp.
519
552
.10.1021/cr010426b
16.
Arnold
,
N.
,
Luk'Yanchuk
,
B.
, and
Bityurin
,
N.
,
1998
, “
A Fast Quantitative Modelling of ns Laser Ablation Based on Non-Stationary Averaging Technique
,”
Appl. Surf. Sci.
,
129
, pp.
184
192
.10.1016/S0169-4332(97)00630-2
17.
Luk'Yanchuk
,
B.
,
Bityurin
,
N.
,
Himmelbauer
,
M.
, and
Arnold
,
N.
,
1997
, “
UV-Laser Ablation of Polyimide: From Long to Ultra-Short Laser Pulses
,”
Nucl. Inst. Methods Phys. Res., B
,
122
(
3
), pp.
347
355
.10.1016/S0168-583X(96)00759-8
You do not currently have access to this content.