Abstract

Fused deposition modeling (FDM) printing of continuous fiber reinforced polymers had been a challenge until about 5 years ago. With the reinforcement of continuous fiber, the mechanical properties of FDM printed polymers are improved by leaps and bounds. In this paper, we aim to investigate the possibility of further improvement in the mechanical properties of three-dimensional (3D) printed continuous fiber reinforced polymers by adding nanoreinforcements to the polymer matrix. Kevlar fiber is selected as the continuous fiber reinforcement, nylon 6 (PA 6) is selected as the polymer matrix material, and carbon nanotubes (CNTs) or graphene nanoplatelets (GNPs) nanoparticles are selected as the nanoreinforcements. In the experiment, CNT or GNP nanoparticles are first mixed with nylon 6 pellets to make nanocomposites, the nanocomposites are then extruded into filaments for 3D printing, and finally, both Kevlar filament and nanocomposite filament are fed through the printing nozzle and deposited on the platform. Tensile specimens are directly printed from pure PA 6 and three types of nanocomposites, namely, CNT/PA 6, GNP/PA 6, and GNP-NH2/PA 6, as well as Kevlar fiber reinforced PA 6 and three types of Kevlar fiber reinforced nanocomposites. The results indicate that although Kevlar fibers dominate the enhancement of mechanical properties for the printed composite materials, the existence of GNP nanofillers also provide a noticeable contribution to the enhancement of tensile strengths and moduli, while the effect of CNTs is much less pronounced.

References

1.
Lyons
,
B.
,
2014
, “
Additive Manufacturing in Aerospace: Examples and Research Outlook
,”
Bridge
,
44
(
3
), pp.
13
19
.
2.
Abdelaal
,
O. A. M.
, and
Darwish
,
S. M. H.
,
2013
, “
Review of Rapid Prototyping Techniques for Tissue Engineering Scaffolds Fabrication
,”
Characterization and Development of Biosystems and Biomaterials
,
Springer
, Berlin, pp.
33
54
.
3.
Melgoza
,
E. L.
,
Vallicrosa
,
G.
,
Serenó
,
L.
,
Ciurana
,
J.
, and
Rodríguez
,
C. A.
,
2014
, “
Rapid Tooling Using 3D Printing System for Manufacturing of Customized Tracheal Stent
,”
Rapid Prototyping J.
,
20
(
1
), pp.
2
12
.10.1108/RPJ-01-2012-0003
4.
Sun
,
J.
,
Peng
,
Z.
,
Yan
,
L.
,
Fuh
,
J. Y. H.
, and
Hong
,
G. S.
,
2015
, “
3D Food Printing—An Innovative Way of Mass Customization in Food Fabrication
,”
Int. J. Bioprint.
,
1
(
1
), pp.
27
38
.http://ijb.whioce.com/index.php/int-j-bioprinting/article/view/01006
5.
Ilardo
,
R.
, and
Williams
,
C. B.
,
2010
, “
Design and Manufacture of a Formula SAE Intake System Using Fused Deposition Modeling and Fiber-Reinforced Composite Materials
,”
Rapid Prototyping J.
,
16
(
3
), pp.
174
179
.10.1108/13552541011034834
6.
Kalita
,
S. J.
,
Bose
,
S.
,
Hosick
,
H. L.
, and
Bandyopadhyay
,
A.
,
2003
, “
Development of Controlled Porosity Polymer-Ceramic Composite Scaffolds Via Fused Deposition Modeling
,”
Mater. Sci. Eng.: C
,
23
(
5
), pp.
611
620
.10.1016/S0928-4931(03)00052-3
7.
Masood
,
S. H.
, and
Song
,
W. Q.
,
2004
, “
Development of New Metal/Polymer Materials for Rapid Tooling Using Fused Deposition Modelling
,”
Mater. Des.
,
25
(
7
), pp.
587
594
.10.1016/j.matdes.2004.02.009
8.
Serra
,
T.
,
Planell
,
J. A.
, and
Navarro
,
M.
,
2013
, “
High-Resolution PLA-Based Composite Scaffolds Via 3-D Printing Technology
,”
Acta Biomater.
,
9
(
3
), pp.
5521
5530
.10.1016/j.actbio.2012.10.041
9.
Guo
,
Y.
,
Jiang
,
K.
, and
Bourell
,
D. L.
,
2015
, “
Accuracy and Mechanical Property Analysis of LPA12 Parts Fabricated by Laser Sintering
,”
Polym. Test.
,
42
, pp.
175
180
.10.1016/j.polymertesting.2015.01.019
10.
Lin
,
D.
,
Jin
,
S.
,
Zhang
,
F.
,
Wang
,
C.
,
Wang
,
Y.
,
Zhou
,
C.
, and
Cheng
,
G. J.
,
2015
, “
3D Stereolithography Printing of Graphene Oxide Reinforced Complex Architectures
,”
Nanotechnology
,
26
(
43
), p.
434003
.10.1088/0957-4484/26/43/434003
11.
Postiglione
,
G.
,
Natale
,
G.
,
Griffini
,
G.
,
Levi
,
M.
, and
Turri
,
S.
,
2015
, “
Conductive 3D Microstructures by Direct 3D Printing of Polymer/Carbon Nanotube Nanocomposites Via Liquid Deposition Modeling
,”
Compos. Part A: Appl. Sci. Manuf.
,
76
, pp.
110
114
.10.1016/j.compositesa.2015.05.014
12.
Jia
,
Y.
,
He
,
H.
,
Geng
,
Y.
,
Huang
,
B.
, and
Peng
,
X.
,
2017
, “
High Through-Plane Thermal Conductivity of Polymer Based Product With Vertical Alignment of Graphite Flakes Achieved Via 3D Printing
,”
Compos. Sci. Technol.
,
145
, pp.
55
61
.10.1016/j.compscitech.2017.03.035
13.
Zhong
,
W.
,
Li
,
F.
,
Zhang
,
Z.
,
Song
,
L.
, and
Li
,
Z.
,
2001
, “
Short Fiber Reinforced Composites for Fused Deposition Modeling
,”
Mater. Sci. Eng.: A
,
301
(
2
), pp.
125
130
.10.1016/S0921-5093(00)01810-4
14.
Love
,
L. J.
,
Kunc
,
V.
,
Rios
,
O.
,
Duty
,
C. E.
,
Elliott
,
A. M.
,
Post
,
B. K.
,
Smith
,
R. J.
, and
Blue
,
C. A.
,
2014
, “
The Importance of Carbon Fiber to Polymer Additive Manufacturing
,”
J. Mater. Res.
,
29
(
17
), pp.
1893
1898
.10.1557/jmr.2014.212
15.
Ning
,
F.
,
Cong
,
W.
,
Qiu
,
J.
,
Wei
,
J.
, and
Wang
,
S.
,
2015
, “
Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling
,”
Compos. Part B: Eng.
,
80
, pp.
369
378
.10.1016/j.compositesb.2015.06.013
16.
Carneiro
,
O. S.
,
Silva
,
A. F.
, and
Gomes
,
R.
,
2015
, “
Fused Deposition Modeling With Polypropylene
,”
Mater. Des.
,
83
, pp.
768
776
.10.1016/j.matdes.2015.06.053
17.
Brooks
,
H.
, and
Molony
,
S.
,
2016
, “
Design and Evaluation of Additively Manufactured Parts With Three Dimensional Continuous Fibre Reinforcement
,”
Mater. Des.
,
90
, pp.
276
283
.10.1016/j.matdes.2015.10.123
18.
Prüß
,
H.
, and
Vietor
,
T.
,
2015
, “
Design for Fiber-Reinforced Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111409
.10.1115/1.4030993
19.
Namiki
,
M.
,
Ueda
,
M.
,
Todoroki
,
A.
,
Hirano
,
Y.
, and
Matsuzaki
,
R.
,
2014
, “
3D Printing of Continuous Fiber Reinforced Plastic
,”
Proc. Soc. Adv. Mater. Process Eng.
,
45
, pp.
187
196
.
20.
Ding
,
P.
,
Su
,
S.
,
Song
,
N.
,
Tang
,
S.
,
Liu
,
Y.
, and
Shi
,
L.
,
2014
, “
Highly Thermal Conductive Composites With Polyamide-6 Covalently-Grafted Graphene by an In Situ Polymerization and Thermal Reduction Process
,”
Carbon
,
66
, pp.
576
584
.10.1016/j.carbon.2013.09.041
21.
Kashiwagi
,
T.
,
Harris
,
R. H.
, Jr
,
Zhang
,
X.
,
Briber
,
R. M.
,
Cipriano
,
B. H.
,
Raghavan
,
S. R.
,
Awad
,
W. H.
, and
Shields
,
J. R.
,
2004
, “
Flame Retardant Mechanism of Polyamide 6–Clay Nanocomposites
,”
Polymer
,
45
(
3
), pp.
881
891
.10.1016/j.polymer.2003.11.036
22.
Mahfuz
,
H.
,
Adnan
,
A.
,
Rangari
,
V. K.
,
Hasan
,
M. M.
,
Jeelani
,
S.
,
Wright
,
W. J.
, and
DeTeresa
,
S. J.
,
2006
, “
Enhancement of Strength and Stiffness of Nylon 6 Filaments Through Carbon Nanotubes Reinforcement
,”
Appl. Phys. Lett.
,
88
(
8
), p.
083119
.10.1063/1.2179132
23.
Guo
,
L.
,
Yan
,
H.
,
Chen
,
Z.
,
Liu
,
Q.
,
Feng
,
Y.
,
Ding
,
F.
, and
Nie
,
Y.
,
2018
, “
Amino Functionalization of Reduced Graphene Oxide/Tungsten Disulfide Hybrids and Their Bismaleimide Composites With Enhanced Mechanical Properties
,”
Polymers
,
10
(
11
), p.
1199
.10.3390/polym10111199
24.
Halpin
,
J. C.
, and
Kardos
,
J. L.
,
1976
, “
The Halpin-Tsai Equations: A Review
,”
Polym. Eng. Sci.
,
16
(
5
), pp.
344
352
.10.1002/pen.760160512
25.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.-Z.
, and
Koratkar
,
N.
,
2009
, “
Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content
,”
ACS Nano
,
3
(
12
), pp.
3884
3890
.10.1021/nn9010472
26.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
,
1997
, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
,
277
(
5334
), pp.
1971
1975
.10.1126/science.277.5334.1971
27.
McAllister
,
M. J.
,
Li
,
J.-L.
,
Adamson
,
D. H.
,
Schniepp
,
H. C.
,
Abdala
,
A. A.
,
Liu
,
J.
,
Herrera-Alonso
,
M.
,
Milius
,
D. L.
,
Car
,
R.
,
Prud'homme
,
R. K.
, and
Aksay
,
I. A.
,
2007
, “
Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite
,”
Chem. Mater.
,
19
(
18
), pp.
4396
4404
.10.1021/cm0630800
28.
Ma
,
P.-C.
,
Siddiqui
,
N. A.
,
Marom
,
G.
, and
Kim
,
J.-K.
,
2010
, “
Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review
,”
Compos. Part A: Appl. Sci. Manuf.
,
41
(
10
), pp.
1345
1367
.10.1016/j.compositesa.2010.07.003
29.
McIntosh
,
D.
,
Khabashesku
,
V. N.
, and
Barrera
,
E. V.
,
2006
, “
Nanocomposite Fiber Systems Processed From Fluorinated Single-Walled Carbon Nanotubes and a Polypropylene Matrix
,”
Chem. Mater.
,
18
(
19
), pp.
4561
4569
.10.1021/cm060513q
30.
Tien
,
H. N.
,
Hien
,
N. T. M.
,
Oh
,
E.-S.
,
Chung
,
J.
,
Kim
,
E. J.
,
Choi
,
W. M.
,
Kong
,
B.-S.
, and
Hur
,
S. H.
,
2013
, “
Synthesis of a Highly Conductive and Large Surface Area Graphene Oxide Hydrogel and Its Use in a Supercapacitor
,”
J. Mater. Chem. A
,
1
(
2
), pp.
208
211
.10.1039/C2TA00444E
31.
Dai
,
G.
, and
Mishnaevsky
,
L.
,
2014
, “
Graphene Reinforced Nanocomposites: 3D Simulation of Damage and Fracture
,”
Comput. Mater. Sci.
,
95
, pp.
684
692
.10.1016/j.commatsci.2014.08.011
32.
Suh
,
J.
, and
Bae
,
D.
,
2016
, “
Mechanical Properties of Polytetrafluoroethylene Composites Reinforced With Graphene Nanoplatelets by Solid-State Processing
,”
Compos. Part B: Eng.
,
95
, pp.
317
323
.10.1016/j.compositesb.2016.03.082
33.
Li
,
Y.
,
Sun
,
J.
,
Wang
,
J.
,
Qin
,
C.
, and
Dai
,
L.
,
2016
, “
Preparation of Well—Dispersed Reduced Graphene Oxide and Its Mechanical Reinforcement in Polyvinyl Alcohol Fibre
,”
Polym. Int.
,
65
(
9
), pp.
1054
1062
.10.1002/pi.5151
34.
Banerjee
,
S.
,
Hemraj‐Benny
,
T.
, and
Wong
,
S. S.
,
2005
, “
Covalent Surface Chemistry of Single—Walled Carbon Nanotubes
,”
Adv. Mater.
,
17
(
1
), pp.
17
29
.10.1002/adma.200401340
35.
Georgakilas
,
V.
,
Otyepka
,
M.
,
Bourlinos
,
A. B.
,
Chandra
,
V.
,
Kim
,
N.
,
Kemp
,
K. C.
,
Hobza
,
P.
,
Zboril
,
R.
, and
Kim
,
K. S.
,
2012
, “
Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications
,”
Chem. Rev.
,
112
(
11
), pp.
6156
6214
.10.1021/cr3000412
You do not currently have access to this content.