Abstract

Nanocomposites have been widely used to improve material properties. Nanoscale reinforcement materials in vat photopolymerization resins improve the hardness, tensile strength, impact strength, elongation, and electrical conductivity of the printed products. This paper presents a literature review on the effects of reinforcement materials on nanocomposite properties. Additionally, preprocessing techniques, printing processes, and postprocessing techniques of nanocomposites are discussed. The nanocomposite properties are summarized based on their applications in the mechanical, electrical and magnetic, and biomedical industries. Future research directions are proposed to improve the material properties of printed nanocomposites.

References

References
1.
ASTM
,
2015
,
Standard Terminology for Additive Manufacturing—General Principles—Terminology
,” ASTM International. West Conshohocken, PA, Standard No. ISO/ASTM52900-15.
2.
Ligon
,
S. C.
,
Liska
,
R.
,
Stampfl
,
J.
,
Gurr
,
M.
, and
Mülhaupt
,
R.
,
2017
, “
Polymers for 3D Printing and Customized Additive Manufacturing
,”
Chem. Rev.
,
117
(
15
), pp.
10212
10290
.10.1021/acs.chemrev.7b00074
3.
Manapat
,
J. Z.
,
Chen
,
Q.
,
Ye
,
P.
, and
Advincula
,
R. C.
,
2017
, “
3D Printing of Polymer Nanocomposites Via Stereolithography
,”
Macromol. Mater. Eng.
,
302
(
9
), p.
1600553
.10.1002/mame.201600553
4.
Yunus
,
D. E.
,
Shi
,
W.
,
Sohrabi
,
S.
, and
Liu
,
Y.
,
2016
, “
Shear Induced Alignment of Short Nanofibers in 3D Printed Polymer Composites
,”
Nanotechnology
,
27
(
49
), p.
495302
.10.1088/0957-4484/27/49/495302
5.
Wozniak
,
M.
,
de Hazan
,
Y.
,
Graule
,
T.
, and
Kata
,
D.
,
2011
, “
Rheology of UV Curable Colloidal Silica Dispersions for Rapid Prototyping Applications
,”
J. Eur. Ceram. Soc.
,
31
(
13
), pp.
2221
2229
.10.1016/j.jeurceramsoc.2011.05.004
6.
Han
,
Y.
,
Wang
,
FKe.
,
Wang
,
H.
,
Jiao
,
X.
, and
Chen
,
D.
,
2018
, “
High-Strength Boehmite-Acrylate Composites for 3D Printing: Reinforced Filler-Matrix Interactions
,”
Compos. Sci. Technol.
,
154
, pp.
104
109
.10.1016/j.compscitech.2017.10.026
7.
Weng
,
Z.
,
Zhou
,
Y.
,
Lin
,
W.
,
Senthil
,
T.
, and
Wu
,
L.
,
2016
, “
Structure-Property Relationship of Nano Enhanced Stereolithography Resin for Desktop SLA 3D Printer
,”
Compos. Part A: Appl. Sci. Manuf.
,
88
, pp.
234
242
.10.1016/j.compositesa.2016.05.035
8.
Gurr
,
M.
,
Hofmann
,
D.
,
Ehm
,
M.
,
Thomann
,
Y.
,
Kübler
,
R.
, and
Mülhaupt
,
R.
,
2008
, “
Acrylic Nanocomposite Resins for Use in Stereolithography and Structural Light Modulation Based Rapid Prototyping and Rapid Manufacturing Technologies
,”
Adv. Funct. Mater.
,
18
(
16
), pp.
2390
2397
.10.1002/adfm.200800344
9.
Manapat
,
J. Z.
,
Mangadlao
,
J. D.
,
Tiu
,
B. D. B.
,
Tritchler
,
G. C.
, and
Advincula
,
R. C.
,
2017
, “
High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability
,”
ACS Appl. Mater. Interfaces 9(11)
, pp.
10085
10093
.10.1021/acsami.6b16174
10.
Corcione
,
C. E.
,
Cataldi
,
A.
, and
Frigione
,
M.
,
2013
, “
Measurements of Size Distribution Nanoparticles in Ultraviolet‐Curable Methacrylate‐Based Boehmite Nanocomposites
,”
J. Appl. Polym. Sci.
,
128
(
6
), pp.
4102
4109
.10.1002/app.38639
11.
Gonzalez
,
G.
,
Chiappone
,
A.
,
Roppolo
,
I.
,
Fantino
,
E.
,
Bertana
,
V.
,
Perrucci
,
F.
,
Scaltrito
,
L.
,
Pirri
,
F.
, and
Sangermano
,
M.
,
2017
, “
Development of 3D Printable Formulations Containing CNT With Enhanced Electrical Properties
,”
Polymers
,
109
, pp.
246
253
.10.1016/j.polymer.2016.12.051
12.
Palaganas
,
N. B.
,
Mangadlao
,
J. D.
,
de Leon
,
A. C. C.
,
Palaganas
,
J. O.
,
Pangilinan
,
K. D.
,
Lee
,
Y. J.
, and
Advincula
,
R. C.
,
2017
, “
3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures Via Stereolithography
,”
ACS Appl. Mater. Interfaces, 9(39)
, pp.
34314
34324
.10.1021/acsami.7b09223
13.
Yang
,
Y.
,
Chen
,
Z.
,
Song
,
X.
,
Zhu
,
B.
,
Hsiai
,
T.
,
Wu
,
P.-I.
,
Xiong
,
R.
,
Shi
,
J.
,
Chen
,
Y.
,
Zhou
,
Q.
, and
Shung
,
K. K.
,
2016
, “
Three Dimensional Printing of High Dielectric Capacitor Using Projection Based Stereolithography Method
,”
Nano Energy
,
22
, pp.
414
421
.10.1016/j.nanoen.2016.02.045
14.
Lu
,
Y.
,
Vatani
,
M.
, and
Choi
,
J.-W.
,
2013
, “
Direct-Write/Cure Conductive Polymer Nanocomposites for 3D Structural Electronics
,”
J. Mech. Sci. Technol.
,
27
(
10
), pp.
2929
2934
.10.1007/s12206-013-0805-4
15.
Sciancalepore
,
C.
,
Moroni
,
F.
,
Messori
,
M.
, and
Bondioli
,
F.
,
2017
, “
Acrylate-Based Silver Nanocomposite by Simultaneous Polymerization–Reduction Approach Via 3D Stereolithography
,”
Compos. Commun.
,
6
, pp.
11
16
.10.1016/j.coco.2017.07.006
16.
Gurr
,
M.
,
Thomann
,
Y.
,
Nedelcu
,
M.
,
Kübler
,
R.
,
Könczöl
,
L.
, and
Mülhaupt
,
R.
,
2010
, “
Novel Acrylic Nanocomposites Containing In-Situ Formed Calcium Phosphate/Layered Silicate Hybrid Nanoparticles for Photochemical Rapid Prototyping, Rapid Tooling and Rapid Manufacturing Processes
,”
Polymers
,
51
(
22
), pp.
5058
5070
.10.1016/j.polymer.2010.08.026
17.
Feng
,
X.
,
Yang
,
Z.
,
Chmely
,
S.
,
Wang
,
Q.
,
Wang
,
S.
, and
Xie
,
Y.
,
2017
, “
Lignin-Coated Cellulose Nanocrystal Filled Methacrylate Composites Prepared Via 3D Stereolithography Printing: Mechanical Reinforcement and Thermal Stabilization
,”
Carbohydr. Polym.
,
169
, pp.
272
281
.10.1016/j.carbpol.2017.04.001
18.
Fantino
,
E.
,
Chiappone
,
A.
,
Calignano
,
F.
,
Fontana
,
M.
,
Pirri
,
F.
, and
Roppolo
,
I.
,
2016
, “
In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures
,”
Materials
,
9
(
7
), p.
589
.10.3390/ma9070589
19.
Chiappone
,
A.
,
Fantino
,
E.
,
Roppolo
,
I.
,
Lorusso
,
M.
,
Manfredi
,
D.
,
Fino
,
P.
,
Pirri
,
C. F.
, and
Calignano
,
F.
,
2016
, “
3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol–Gel Technique
,”
ACS Appl. Mater. Interfaces
,
8
(
8
), pp.
5627
5633
.10.1021/acsami.5b12578
20.
Chiu
,
S.-H.
,
Wicaksono
,
S. T.
,
Chen
,
K.-T.
,
Chen
,
C.-Y.
, and
Pong
,
S.-H.
,
2015
, “
Mechanical and Thermal Properties of Photopolymer/CB (Carbon Black) Nanocomposite for Rapid Prototyping
,”
Rapid Prototyping J.
,
21
(
3
), pp.
262
269
.10.1108/RPJ-11-2011-0124
21.
Lin
,
D.
,
Jin
,
S.
,
Zhang
,
F.
,
Wang
,
C.
,
Wang
,
Y.
,
Zhou
,
C.
, and
Cheng
,
G. J.
,
2015
, “
3D Stereolithography Printing of Graphene Oxide Reinforced Complex Architectures
,”
Nanotechnology
,
26
(
43
), p.
434003
.10.1088/0957-4484/26/43/434003
22.
Li
,
J.
,
Wang
,
L.
,
Dai
,
L.
,
Zhong
,
L.
,
Liu
,
B.
,
Ren
,
J.
, and
Xu
,
Y.
,
2018
, “
Synthesis and Characterization of Reinforced Acrylate Photosensitive Resin by 2-Hydroxyethyl Methacrylate-Functionalized Graphene Nanosheets for 3D Printing
,”
J. Mater. Sci.
,
53
(
3
), pp.
1874
1886
.10.1007/s10853-017-1432-8
23.
Lee
,
S.-J.
,
Zhu
,
W.
,
Nowicki
,
M.
,
Lee
,
G.
,
Heo
,
D. N.
,
Kim
,
J.
,
Zuo
,
Y. Y.
, and
Zhang
,
L. G.
,
2018
, “
3D Printing Nano Conductive Multi-Walled Carbon Nanotube Scaffolds for Nerve Regeneration
,”
J. Neural Eng.
,
15
(
1
), p.
016018
.10.1088/1741-2552/aa95a5
24.
Chiappone
,
A.
,
Roppolo
,
I.
,
Naretto
,
E.
,
Fantino
,
E.
,
Calignano
,
F.
,
Sangermano
,
M.
, and
Pirri
,
F.
,
2017
, “
Study of Graphene Oxide-Based 3D Printable Composites: Effect of the in Situ Reduction
,”
Compos. Part B: Eng.
,
124
, pp.
9
15
.10.1016/j.compositesb.2017.05.049
25.
Esposito Corcione
,
C.
,
Striani
,
R.
,
Montagna
,
F.
, and
Cannoletta
,
D.
,
2015
, “
Organically Modified Montmorillonite Polymer Nanocomposites for Stereolithography Building Process
,”
Polym. Adv. Technol.
,
26
(
1
), pp.
92
98
.10.1002/pat.3425
26.
Credi
,
C.
,
Fiorese
,
A.
,
Tironi
,
M.
,
Bernasconi
,
R.
,
Magagnin
,
L.
,
Levi
,
M.
, and
Turri
,
S.
,
2016
, “
3D Printing of Cantilever-Type Microstructures by Stereolithography of Ferromagnetic Photopolymers
,”
ACS Appl. Mater. Interfaces
,
8
(
39
), pp.
26332
26342
.10.1021/acsami.6b08880
27.
Kumar
,
S.
,
Hofmann
,
M.
,
Steinmann
,
B.
,
Foster
,
E. J.
, and
Weder
,
C.
,
2012
, “
Reinforcement of Stereolithographic Resins for Rapid Prototyping With Cellulose Nanocrystals
,”
ACS Appl. Mater. Interfaces
,
4
(
10
), pp.
5399
5407
.10.1021/am301321v
28.
Wang
,
L.
, and
Ni
,
X.
,
2017
, “
The Effect of the Inorganic Nanomaterials on the UV-Absorption, Rheological and Mechanical Properties of the Rapid Prototyping Epoxy-Based Composites
,”
Polym. Bull.
,
74
(
6
), pp.
2063
2079
.10.1007/s00289-016-1825-x
29.
Liu
,
H.
, and
Mo
,
J.
,
2010
, “
Study on Nanosilica Reinforced Stereolithography Resin
,”
J. Reinf. Plast. Compos.
,
29
(
6
), pp.
909
920
.10.1177/0731684409102838
30.
Ronca
,
A.
,
Ambrosio
,
L.
, and
Grijpma
,
D. W.
,
2013
, “
Preparation of Designed Poly (D, L-Lactide)/Nanosized Hydroxyapatite Composite Structures by Stereolithography
,”
Acta Biomater.
,
9
(
4
), pp.
5989
5996
.10.1016/j.actbio.2012.12.004
31.
Ronca
,
A.
,
Ambrosio
,
L.
, and
Grijpma
,
D. W.
,
2012
, “
Design of Porous Three-Dimensional PDLLA/Nano-Hap Composite Scaffolds Using Stereolithography
,”
J. Appl. Biomater. Funct. Mater.
,
10
(
3
), pp.
249
258
.10.5301/JABFM.2012.10211
32.
Abdelrasoul
,
G. N.
,
Farkas
,
B.
,
Romano
,
I.
,
Diaspro
,
A.
, and
Beke
,
S.
,
2015
, “
Nanocomposite Scaffold Fabrication by Incorporating Gold Nanoparticles Into Biodegradable Polymer Matrix: Synthesis, Characterization, and Photothermal Effect
,”
Mater. Sci. Eng.: C
,
56
, pp.
305
310
.10.1016/j.msec.2015.06.037
33.
Lee
,
J. W.
,
Ahn
,
G.
,
Kim
,
D. S.
, and
Cho
,
D.-W.
,
2009
, “
Development of Nano-and Microscale Composite 3D Scaffolds Using PPF/DEF-HA and Micro-Stereolithography
,”
Microelectron. Eng.
,
86
(
4–6
), pp.
1465
1467
.10.1016/j.mee.2008.12.038
34.
Geven
,
M. A.
,
Varjas
,
V.
,
Kamer
,
L.
,
Wang
,
X.
,
Peng
,
J.
,
Eglin
,
D.
, and
Grijpma
,
D. W.
,
2015
, “
Fabrication of Patient Specific Composite Orbital Floor Implants by Stereolithography
,”
Polym. Adv. Technol.
,
26
(
12
), pp.
1433
1438
.10.1002/pat.3589
35.
Pham
,
T.  A.
,
Kim
,
D.-P.
,
Lim
,
T.-W.
,
Park
,
S.-H.
,
Yang
,
D.-Y.
, and
Lee
,
K.-S.
,
2006
, “
Three‐Dimensional SiCN Ceramic Microstructures Via Nano‐Stereolithography of Inorganic Polymer Photoresists
,”
Adv. Funct. Mater.
,
16
(
9
), pp.
1235
1241
.10.1002/adfm.200600009
36.
Gallardo
,
A.
,
Pereyra
,
Y.
,
Martínez-Campos
,
E.
,
García
,
C.
,
Acitores
,
D.
,
Casado-Losada
,
I.
,
Gómez-Fatou
,
M. A.
,
Reinecke
,
H.
,
Ellis
,
G.
,
Acevedo
,
D.
,
Rodríguez-Hernández
,
J.
, and
Salavagione
,
H. J.
,
2017
, “
Facile One-Pot Exfoliation and Integration of 2D Layered Materials by Dispersion in a Photocurable Polymer Precursor
,”
Nanoscale
,
9
(
30
), pp.
10590
10595
.10.1039/C7NR03204H
37.
dos Santos
,
M. N.
,
Opelt
,
C. V.
,
Lafratta
,
F. H.
,
Lepienski
,
C. M.
,
Pezzin
,
S. H.
, and
Coelho
,
L. A.
,
2011
, “
Thermal and Mechanical Properties of a Nanocomposite of a Photocurable Epoxy-Acrylate Resin and Multiwalled Carbon Nanotubes
,”
Mater. Sci. Eng.: A
,
528
(
13–14
), pp.
4318
4324
.10.1016/j.msea.2011.02.036
38.
Lu
,
K. L.
,
Lago
,
R. M.
,
Chen
,
Y. K.
,
Green
,
M. L. H.
,
Harris
,
P. J. F.
, and
Tsang
,
S. C.
,
1996
, “
Mechanical Damage of Carbon Nanotubes by Ultrasound
,”
Carbon
,
34
(
6
), pp.
814
816
.10.1016/0008-6223(96)89470-X
39.
de Leon
,
A. C.
,
Chen
,
Q.
,
Palaganas
,
N. B.
,
Palaganas
,
J. O.
,
Manapat
,
J.
, and
Advincula
,
R. C.
,
2016
, “
High Performance Polymer Nanocomposites for Additive Manufacturing Applications
,”
Reactive Funct. Polym.
,
103
, pp.
141
155
.10.1016/j.reactfunctpolym.2016.04.010
40.
Lee
,
J. H.
,
Prud'Homme
,
R. K.
, and
Aksay
,
I. A.
,
2001
, “
Cure Depth in Photopolymerization: Experiments and Theory
,”
J. Mater. Res.
,
16
(
12
), pp.
3536
3544
.10.1557/JMR.2001.0485
41.
Park
,
W. S.
,
Kim
,
M. Y.
,
Lee
,
H. G.
, and
Cho
,
H. S.
, and
Leu
,
M.-C.
,
1998
, “
Process Layer Surface Inspection SLA Products,” Intell. Syst. Des. Manuf.
,
3517
, pp.
70
79
.https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3517/0000/In-process-layer-surface-inspection-of-SLA-products/10.1117/12.326910.short?SSO=1
42.
Melchels
,
F. P.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
A Review on Stereolithography and Its Applications in Biomedical Engineering
,”
Biomaterials
,
31
(
24
), pp.
6121
6130
.10.1016/j.biomaterials.2010.04.050
43.
Farahani
,
R. D.
,
Dubé
,
M.
, and
Therriault
,
D.
,
2016
, “
Three‐Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications
,”
Adv. Mater.
,
28
(
28
), pp.
5794
5821
.10.1002/adma.201506215
44.
Partanen
,
J. P.
,
1996
, “
Solid State Lasers for Stereolithography
,”
Int. Congr. Appl. Lasers Electro-Opt.
,
1
, pp.
E115
E123
.https://repositories.lib.utexas.edu/handle/2152/70259
45.
Zhou
,
X.
,
Hou
,
Y.
, and
Lin
,
J.
,
2015
, “
A Review on the Processing Accuracy of Two-Photon Polymerization
,”
AIP Adv.
,
5
(
3
), p.
030701
.10.1063/1.4916886
46.
Köhler
,
J.
,
Ksouri
,
S. I.
,
Esen
,
C.
, and
Ostendorf
,
A.
,
2017
, “
Optical Screw-Wrench for Microassembly
,”
Microsyst. Nanoeng.
,
3
, p. 16083.https://www.nature.com/articles/micronano201683
47.
Greenhall
,
J.
, and
Raeymaekers
,
B.
,
2017
, “
3D Printing Macroscale Engineered Materials Using Ultrasound Directed Self‐Assembly and Stereolithography
,”
Adv. Mater. Technol.
,
2
(
9
), p.
1700122
.10.1002/admt.201700122
48.
Janusziewicz
,
R.
,
Tumbleston
,
J. R.
,
Quintanilla
,
A. L.
,
Mecham
,
S. J.
, and
DeSimone
,
J. M.
,
2016
, “
Layerless Fabrication With Continuous Liquid Interface Production
,”
Proc. Natl. Acad. Sci.
,
113
(
42
), pp.
11703
11708
.10.1073/pnas.1605271113
49.
Balli
,
J.
,
Kumpaty
,
S.
, and
Anewenter
,
V.
,
2017
, “
Continuous Liquid Interface Production of 3D Objects: An Unconventional Technology and Its Challenges and Opportunities
,”
ASME
Paper No. IMECE2017-71802. 10.1115/IMECE2017-71802
50.
Song
,
X.
,
Chen
,
Y.
,
Lee
,
T. W.
,
Wu
,
S.
, and
Cheng
,
L.
,
2015
, “
Ceramic Fabrication Using Mask-Image-Projection-Based Stereolithography Integrated With Tape-Casting
,”
J. Manuf. Processes
,
20
, pp.
456
464
.10.1016/j.jmapro.2015.06.022
51.
Farkas
,
B.
,
Dante
,
S.
, and
Brandi
,
F.
,
2017
, “
Photoinitiator-Free 3D Scaffolds Fabricated by Excimer Laser Photocuring
,”
Nanotechnology
,
28
(
3
), p.
034001
.10.1088/1361-6528/28/3/034001
52.
Hsieh
,
T. H.
,
Kinloch
,
A. J.
,
Taylor
,
A. C.
, and
Kinloch
,
I. A.
,
2011
, “
The Effect of Carbon Nanotubes on the Fracture Toughness and Fatigue Performance of a Thermosetting Epoxy Polymer
,”
J. Mater. Sci.
,
46
(
23
), p.
7525
.10.1007/s10853-011-5724-0
53.
Matweb
,
2019
, “
Overview of Materials for Acrylic, Cast
,” MatWeb Material Property Data.
54.
Bass
,
L.
,
Meisel
,
N. A.
, and
Williams
,
C. B.
,
2016
, “
Exploring Variability of Orientation and Aging Effects in Material Properties of Multi-Material Jetting Parts
,”
Rapid Prototyping J.
,
22
(
5
), pp.
826
834
.10.1108/RPJ-11-2015-0169
55.
Chang
,
S.
,
Attinger
,
D.
,
Chiang
,
F. ‐P.
,
Zhao
,
Y.
, and
Patel
,
R. C.
,
2004
, “
SIEM Measurements of Ultimate Tensile Strength and Tensile Modulus of Jetted, UV-Cured Epoxy Resin Microsamples
,”
Rapid Prototyping J.
,
10
(
3
), pp.
193
199
.10.1108/13552540410539012
56.
Young
,
K. D.
,
2007
, “
Bacterial Morphology: Why Have Different Shapes?
,”
Curr. Opin. Microbiol.
,
10
(
6
), pp.
596
600
.10.1016/j.mib.2007.09.009
You do not currently have access to this content.