In this paper, the effect of heating rate was investigated on the densification and mechanical properties of Ni–19at %Cr binary alloy developed by spark plasma sintering technique. The sintered binary alloy at different heating rate was prepared metallurgically for microstructural analysis, nanoindentation, and X-ray diffraction (XRD) analysis. Nanoindentation technique at room temperature was utilized in investigating the elastic modulus, and hardness of the alloys. However, nanoindentation tests showed that the maximum indentation hardness was obtained by the alloy sintered at heating rate of 100 °C/min, the hardness value and density were observed to decreases as the heating rate increases beyond 100 °C/min. Similar trend was observed for the relative density of the alloys, with the relative density decreasing as heating rate increases beyond 100 °C/min. The fractography analysis of the sintered alloy at different heating rate was characterized by ductile deformation mode.

References

References
1.
Jiang
,
H.
,
Li
,
L.
,
Dong
,
J.
, and
Xie
,
X.
,
2018
, “
Microstructure-Based Hot Extrusion Process Control Principles for Nickel-Base Superalloy Pipes
,”
Prog. Nat. Sci. Mater. Int.
,
28
(
3
), pp.
391
398
.
2.
Akca
,
E.
, and
Gürsel
,
A.
,
2015
, “
A Review on Superalloys and IN718 Nickel-Based INCONEL Superalloy
,”
PEN
,
3
(
1
), pp.
15
27
.http://pen.ius.edu.ba/index.php/pen/article/viewFile/43/47
3.
Pollock
,
T. M.
, and
Tin
,
S.
,
2006
, “
Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties
,”
J. Propul. Power.
,
22
(
2
), pp.
361
374
.
4.
Cui
,
L.
,
Yu
,
J.
,
Liu
,
J.
,
Jin
,
T.
, and
Sun
,
X.
,
2018
, “
The Creep Deformation Mechanisms of a Newly Designed Nickel-Base Superalloy
,”
Mater. Sci. Eng. A.
,
710
, pp.
309
317
.
5.
Goodfellow
,
A. J.
,
Galindo-Nava
,
E. I.
,
Christofidou
,
K. A.
,
Jones
,
N. G.
,
Boyer
,
C. D.
,
Martin
,
T. L.
,
Bagot
,
P. A. J.
,
Hardy
,
M. C.
, and
Stone
,
H. J.
,
2018
, “
The Effect of Phase Chemistry on the Extent of Strengthening Mechanisms in Model Ni-Cr-Al-Ti-Mo Based Superalloys
,”
Acta Mater.
,
153
, pp.
290
302
.
6.
Babalola
,
B. J.
,
Shongwe
,
M. B.
,
Obadele
,
B. A.
, and
Olubambi
,
P. A.
,
2019
, “
Densification, Microstructure and Mechanical Properties of Spark Plasma Sintered Ni-17%Cr Binary Alloys
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5–8
), pp.
1573
1581
.
7.
Romero
,
A.
,
Herranz
,
G.
, and
Morales
,
A. L.
,
2015
, “
Study of Magnetoelastic Properties of Pure Nickel Parts Produced by Metal Injection Moulding
,”
Mater. Des.
,
88
, pp.
438
445
.
8.
ElRakayby
,
H.
,
Kim
,
H.
,
Hong
,
S.
, and
Kim
,
K.
,
2015
, “
An Investigation of Densification Behavior of Nickel Alloy Powder During Hot Isostatic Pressing
,”
Adv. Powder Technol.
,
26
(
5
), pp.
1314
1318
.
9.
Teng
,
Q.
,
Wei
,
Q.
,
Xue
,
P.
,
Cai
,
C.
,
Chen
,
H.
,
Chen
,
H.
, and
Shi
,
Y.
,
2019
, “
Effects of Processing Temperatures on FGH4097 Superalloy Fabricated by Hot Isostatic Pressing: Microstructure Evolution, Mechanical Properties and Fracture Mechanism
,”
Mater. Sci. Eng. A.
,
739
, pp.
118
131
.
10.
Kumar
,
S. S. S.
,
Raghu
,
T.
,
Bhattacharjee
,
P. P.
,
Rao
,
G. A.
, and
Borah
,
U.
,
2016
, “
Strain Rate Dependent Microstructural Evolution During Hot Deformation of a Hot Isostatically Processed Nickel Base Superalloy
,”
J. Alloys Compd.
,
681
, pp.
28
42
.
11.
Qiu
,
C.
,
Chen
,
H.
,
Liu
,
Q.
,
Yue
,
S.
, and
Wang
,
H.
,
2019
, “
On the Solidification Behaviour and Cracking Origin of a Nickel-Based Superalloy During Selective Laser Melting
,”
Mater. Charact.
,
148
, pp.
330
344
.
12.
Peng
,
L.
,
Taiping
,
Y.
,
SHeng
,
L.
,
Dongsheng
,
L.
,
Qianwu
,
H.
,
Weihao
,
X.
, and
Xiaoyan
,
Z.
,
2005
, “
Direct Laser Fabrication of Nickel Alloy Samples
,”
Int. J. Mach. Tools Manuf.
,
45
(
11
), pp.
1288
1294
.
13.
Shiva
,
S.
,
Palani
,
I. A.
,
Mishra
,
S. K.
,
Paul
,
C. P.
, and
Kukreja
,
L. M.
,
2015
, “
Investigations on the Influence of Composition in the Development of Ni–Ti Shape Memory Alloy Using Laser Based Additive Manufacturing
,”
Opt. Laser Technol.
,
69
, pp.
44
51
.
14.
Chen
,
X.
,
Zhang
,
L.
,
Liu
,
Y.
,
Gao
,
X.
,
Li
,
D.
,
Lu
,
H.
, and
Qu
,
X.
,
2019
, “
Phase Evolution and Densification Behavior of MIM418 Superalloy Utilizing Master Alloy Approach
,”
J. Alloys Compd.
,
771
, pp.
33
41
.
15.
Özgün
,
Ö.
,
Gülsoy
,
H. Ö.
,
Yilmaz
,
R.
, and
Findik
,
F.
,
2013
, “
Injection Molding of Nickel Based 625 Superalloy: Sintering, Heat Treatment, Microstructure and Mechanical Properties
,”
J. Alloys Compd.
,
546
, pp.
192
207
.
16.
Ma
,
J.
,
Qin
,
M.
,
Zhang
,
L.
,
Zhang
,
R.
, and
Qu
,
X.
,
2013
, “
Microstructure and Magnetic Properties of Fe–50%Ni Alloy Fabricated by Powder Injection Molding
,”
J. Magn. Magn. Mater.
,
329
, pp.
24
29
.
17.
Babalola
,
B. J.
,
Shongwe
,
M. B.
,
Obadele
,
B. A.
,
Olubambi
,
P. A.
,
Ayodele
,
O. O.
,
Rominiyi
,
A. L.
, and
Jeje
,
S. O.
,
2018
, “
Comparative Study of Spark Plasma Sintering Features on the Densification of Ni-Cr Binary Alloys
,”
MATEC Web Conf.
,
249
, p.
01004
.
18.
Babalola
,
B. J.
,
Maledi
,
N.
,
Shongwe
,
M. B.
,
Bodunrin
,
M. O.
,
Obadele
,
B. A.
, and
Olubambi
,
P. A.
,
2019
, “
Influence of Nanocrystalline Nickel Powder on Oxidation Resistance of Spark Plasma Sintered Ni-17Cr6.5Co1.2Mo6Al4W7.6Ta Alloy
,”
JKSUES
(in press).
19.
Dong
,
X.
,
,
F.
,
Yang
,
L.
,
Zhang
,
Y.
, and
Wang
,
X.
,
2008
, “
Influence of Spark Plasma Sintering Temperature on Electrochemical Performance of La0. 80Mg0. 20Ni3. 75 Alloy
,”
Mater. Chem. Phys.
,
112
(
2
), pp.
596
602
.
20.
Hassanzadeh-Tabrizi
,
S. A.
,
2017
, “
Spark Plasma Sintering of Forsterite Nanopowder and Mechanical Properties of Sintered Materials
,”
Ceram Int.
,
43
(
17
), pp.
15714
15718
.
21.
Bahrami
,
S.
,
Zakeri
,
M.
,
Faeghinia
,
A.
, and
Rahimipour
,
M. R.
,
2017
, “
Spark Plasma Sintering of Silicon Nitride/Barium Aluminum Silicate Composite
,”
Ceram Int.
,
43
(
12
), pp.
9153
9157
.
22.
Guo
,
W. M.
,
Vleugels
,
J.
,
Zhang
,
G. J.
,
Wang
,
P. L.
, and
Van der Biest
,
O.
,
2010
, “
Effect of Heating Rate on Densification, Microstructure and Strength of Spark Plasma Sintered ZrB2-Based Ceramics
,”
Scr. Mater.
,
62
(
10
), pp.
802
805
.
23.
Snyder
,
A.
,
Bo
,
Z.
,
Hodson
,
S.
,
Fisher
,
T.
, and
Stanciu
,
L.
,
2012
, “
The Effect of Heating Rate and Composition on the Properties of Spark Plasma Sintered Zirconium Diboride Based Composites
,”
Mater. Sci. Eng. A.
,
538
, pp.
98
102
.
24.
Shongwe
,
M. B.
,
Ramakokovhu
,
M. M.
,
Diouf
,
S.
,
Durowoju
,
M. O.
,
Obadele
,
B. A.
,
Sule
,
R.
,
Lethabane
,
M. L.
, and
Olubambi
,
P. A.
,
2016
, “
Effect of Starting Powder Particle Size and Heating Rate on Spark Plasma Sintering of FeNi Alloys
,”
J. Alloys Compd.
,
678
, pp.
241
248
.
25.
Shen
,
Z.
,
Johnsson
,
M.
,
Zhao
,
Z.
, and
Nygren
,
M.
,
2002
, “
Spark Plasma Sintering of Alumina
,”
J. Am. Ceram. Soc.
,
85
(
8
), pp.
1921
1927
.
26.
Zhou
,
Y.
,
Hirao
,
K.
,
Yamauchi
,
Y.
, and
Kanzaki
,
S.
,
2004
, “
Densification and Grain Growth in Pulse Electric Current Sintering of Alumina
,”
J. Eur. Ceram. Soc.
,
24
(
12
), pp.
3465
3470
.
You do not currently have access to this content.