Lightweight microstructures with high area-to-mass ratios, or low surface densities, show great potential applications in microrobots, soft electronics, medical devices, and solar sailing. However, the bending stiffness of such microstructures is usually too low to work effectively. In order to obtain active microstructures with enhanced bending stiffness, a new design for thermally actuated multilayered metallic microstructures with high area-to-mass ratios is presented in this article. The microstructures made of aluminum and NiTi alloy are fabricated to demonstrate the feasibility of vertical deployment of such microstructures under thermal actuation. The concept design and working principle of designed multilayered metallic microstructures are based on symmetrical deposition of metals Al\NiTi\NiTi\Al, followed by practical microfabrication processes, such as photolithography, physical vapor deposition (PVD), and dry etch. The area-to-mass ratios of such microstructures could be up to 400 m2/kg. Then, experiments for electrical characterization are set up for thermal actuation or Joule heating. Besides that, the equivalent resistances of such microstructures with regard to temperatures are calibrated, allowing for the determination of in situ temperatures of deformed microstructures when being heated in the vacuum chamber of scanning electron microscope (SEM). Finally, vertical deployment of such thin microstructures is detected and measured, which validates the feasibility of stiffness enhancement through the symmetrical design and thermal actuation.

References

1.
Chen
,
T.
,
Bilal
,
O. R.
,
Shea
,
K.
, and
Daraio
,
C.
,
2018
, “
Harnessing Bistability for Directional Propulsion of Soft, Untethered Robots
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
22
), pp.
5698
5702
.
2.
Chirarattananon
,
P.
,
Ma
,
K. Y.
, and
Wood
,
R. J.
,
2014
, “
Adaptive Control of a Millimeter-Scale Flapping-Wing Robot
,”
Bioinspiration Biomimetics
,
9
(
2
), p.
025004
.
3.
Hines
,
L.
,
Petersen
,
K.
,
Lum
,
G. Z.
, and
Sitti
,
M.
,
2017
, “
Soft Actuators for Small‐Scale Robotics
,”
Adv. Mater.
,
29
(
13
), p.
1603483
.
4.
Nathan
,
A.
,
Ahnood
,
A.
,
Cole
,
M. T.
,
Lee
,
S.
,
Suzuki
,
Y.
,
Hiralal
,
P.
,
Bonaccorso
,
F.
,
Hasan
,
T.
,
Garcia-Gancedo
,
L.
,
Dyadyusha
,
A.
,
Haque
,
S.
,
Andrew
,
P.
,
Hofmann
,
S.
,
Moultrie
,
J.
,
Daping
,
C.
,
Flewitt
,
A. J.
,
Ferrari
,
A. C.
,
Kelly
,
M. J.
,
Robertson
,
J.
,
Amaratunga
,
G. A. J.
, and
Milne
,
W. I.
,
2012
, “
Flexible Electronics: The Next Ubiquitous Platform
,”
Proc. IEEE
,
100
, pp.
1486
1517
.https://ieeexplore.ieee.org/document/6198376
5.
Khan
,
S.
,
Lorenzelli
,
L.
, and
Dahiya
,
R. S.
,
2015
, “
Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review
,”
IEEE Sens. J.
,
15
(
6
), pp.
3164
3185
.
6.
Tanaka
,
M.
,
2007
, “
An Industrial and Applied Review of New MEMS Devices Features
,”
Microelectron. Eng.
,
84
(
5–8
), pp.
1341
1344
.
7.
Penumbra Pivotal Stroke Trial Investigators,
2009
, “
The Penumbra Pivotal Stroke Trial: Safety and Effectiveness of a New Generation of Mechanical Devices for Clot Removal in Intracranial Large Vessel Occlusive Disease
,”
Stroke
,
40
(
8
), pp.
2761
2768
.
8.
Barnhart
,
D. J.
,
Vladimirova
,
T.
, and
Sweeting
,
M. N.
,
2007
, “
Very-Small-Satellite Design for Distributed Space Missions
,”
J. Spacecr. Rockets
,
44
(
6
), pp.
1294
1306
.
9.
Tsuda
,
Y.
,
Mori
,
O.
,
Funase
,
R.
,
Sawada
,
H.
,
Yamamoto
,
T.
,
Saiki
,
T.
,
Endo
,
T.
, and
Kawaguchi
,
J.
,
2011
, “
Flight Status of IKAROS Deep Space Solar Sail Demonstrator
,”
Acta Astronaut.
,
69
(
9–10
), pp.
833
840
.
10.
Johnson
,
L.
,
Whorton
,
M.
,
Heaton
,
A.
,
Pinson
,
R.
,
Laue
,
G.
, and
Adams
,
C.
,
2011
, “
NanoSail-D: A Solar Sail Demonstration Mission
,”
Acta Astronaut.
,
68
(
5–6
), pp.
571
575
.
11.
Ridenoure
,
R. W.
,
Munakata
,
R.
,
Wong
,
S. D.
,
Diaz
,
A.
,
Spencer
,
D. A.
,
Stetson
,
D. A.
,
Betts
,
B.
,
Plante
,
B. A.
,
Foley
,
J. D.
, and
Bellardo
,
J. M.
,
2016
, “
Testing the Lightsail Program: Advancing Solar Sailing Technology Using a CubeSat Platform
,”
J. Small Satellites
,
5
(
2
), pp.
531
550
.http://www.jossonline.com/wp-content/uploads/2016/10/Spencer-Final-Testing-The-LightSail-Program-Advancing-Solar-Sailing-Technology-Using-a-CubeSat-Platform4.pdf
12.
Macdonald
,
M.
, and
McInnes
,
C.
,
2011
, “
Solar Sail Science Mission Applications and Advancement
,”
Adv. Space Res.
,
48
(
11
), pp.
1702
1716
.
13.
Manchester
,
Z.
,
Peck
,
M.
, and
Filo
,
A.
,
2013
, “
Kicksat: A Crowd-Funded Mission to Demonstrate the World's Smallest Spacecraft
,” 27th AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 12–16, Paper No. SSC13-IX-5.
14.
Yan
,
Z.
,
Zhang
,
F.
,
Liu
,
F.
,
Han
,
M.
,
Ou
,
D.
,
Liu
,
Y.
,
Lin
,
Q.
,
Guo
,
X.
,
Fu
,
H.
,
Xie
,
Z.
,
Gao
,
M.
,
Huang
,
Y.
,
Kim
,
J.
,
Qiu
,
Y.
,
Nan
,
K.
,
Kim
,
J.
,
Gutruf
,
P.
,
Luo
,
H.
,
Zhao
,
A.
,
Hwang
,
K.-C.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2016
, “
Mechanical Assembly of Complex, 3D Mesostructures From Releasable Multilayers of Advanced Materials
,”
Sci. Adv.
,
2
(
9
), p.
e1601014
.
15.
Leong
,
T. G.
,
Zarafshar
,
A. M.
, and
Gracias
,
D. H.
,
2010
, “
Three‐Dimensional Fabrication at Small Size Scales
,”
Small
,
6
(
7
), pp.
792
806
.
16.
Zhang
,
W.-M.
,
Yan
,
H.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2014
, “
Electrostatic Pull-in Instability in MEMS/NEMS: A Review
,”
Sens. Actuators A: Phys.
,
214
, pp.
187
218
.
17.
Boudaoud
,
M.
,
Haddab
,
Y.
, and
Le Gorrec
,
Y.
,
2013
, “
Modeling and Optimal Force Control of a Nonlinear Electrostatic Microgripper
,”
IEEE/ASME Trans. Mechatronics
,
18
(
3
), pp.
1130
1139
.
18.
Krylov
,
S.
, and
Dick
,
N.
,
2010
, “
Dynamic Stability of Electrostatically Actuated Initially Curved Shallow Micro Beams
,”
Continuum Mech. Thermodyn.
,
22
(
6–8
), pp.
445
468
.
19.
Acome
,
E.
,
Mitchell
,
S. K.
,
Morrissey
,
T. G.
,
Emmett
,
M. B.
,
Benjamin
,
C.
,
King
,
M.
,
Radakovitz
,
M.
, and
Keplinger
,
C.
,
2018
, “
Hydraulically Amplified Self-Healing Electrostatic Actuators With Muscle-Like Performance
,”
Science
,
359
(
6371
), pp.
61
65
.
20.
Pal
,
S.
, and
Xie
,
H.
,
2012
, “
Fabrication of Robust Electrothermal MEMS Devices Using Aluminum–Tungsten Bimorphs and Polyimide Thermal Isolation
,”
J. Micromech. Microeng.
,
22
(
11
), p.
115036
.
21.
Muraoka
,
M.
, and
Sanada
,
S.
,
2010
, “
Displacement Amplifier for Piezoelectric Actuator Based on Honeycomb Link Mechanism
,”
Sens. Actuators A: Phys.
,
157
(
1
), pp.
84
90
.
22.
Liu
,
J.
,
Liu
,
Y.
,
Zhao
,
L.
,
Xu
,
D.
,
Chen
,
W.
, and
Deng
,
J.
,
2018
, “
Design and Experiments of a Single-Foot Linear Piezoelectric Actuator Operated in a Stepping Mode
,”
IEEE Trans. Ind. Electron.
,
65
(
10
), pp.
8063
8071
.
23.
Panda
,
P. K.
, and
Sahoo
,
B.
,
2015
, “
PZT to Lead Free Piezo Ceramics: A Review
,”
Ferroelectrics
,
474
(
1
), pp.
128
143
.
24.
Kenji
,
U.
, ed.,
2017
,
Advanced Piezoelectric Materials: Science and Technology
,
Woodhead Publishing
, Sawston, UK.
25.
Qiu
,
Z.
,
Pulskamp
,
J. S.
,
Lin
,
X.
,
Rhee
,
C.-H.
,
Wang
,
T.
,
Polcawich
,
R. G.
, and
Oldham
,
K.
,
2010
, “
Large Displacement Vertical Translational Actuator Based on Piezoelectric Thin Films
,”
J. Micromech. Microeng.
,
20
(
7
), p.
075016
.
26.
Wu
,
L.
, and
Xie
,
H.
,
2008
, “
A Large Vertical Displacement Electrothermal Bimorph Microactuator With Very Small Lateral Shift
,”
Sens. Actuators A: Phys.
,
145
, pp.
371
379
.
27.
Ogando
,
K.
,
La Forgia
,
N.
,
Zarate
,
J. J.
, and
Pastoriza
,
H.
,
2012
, “
Design and Characterization of a Fully Compliant Out-of-Plane Thermal Actuator
,”
Sens. Actuators A: Phys.
,
183
, pp.
95
100
.
28.
Tsai
,
C.-H.
,
Tsai
,
C.-W.
,
Chang
,
H.-T.
,
Liu
,
S.-H.
, and
Tsai
,
J.-C.
,
2015
, “
Electrothermally-Actuated Micromirrors With Bimorph Actuators—Bending-Type and Torsion-Type
,”
Sensors
,
15
(
6
), pp.
14745
14756
.
29.
Fu
,
Y.
,
Du
,
H.
,
Huang
,
W.
,
Zhang
,
S.
, and
Hu
,
M.
,
2004
, “
TiNi-Based Thin Films in MEMS Applications: A Review
,”
Sens. Actuators A: Phys.
,
112
(
2–3
), pp.
395
408
.
30.
Zainal
,
M. A.
,
Sahlan
,
S.
, and
Mohamed Ali
,
M. S.
,
2015
, “
Micromachined Shape-Memory-Alloy Microactuators and Their Application in Biomedical Devices
,”
Micromachines
,
6
(
7
), pp.
879
901
.
You do not currently have access to this content.